
An Overview of Limbo/Tk

Lucent Technologies Inc.
Revised June 2000 by Vita Nuova

Overview

Limbo/Tk is a concise and powerful way to construct graphical user interfaces without directly
using the Draw module primitives. Standard interfaces can quickly be created from collections of
menus, buttons, and other widgets that are part of Limbo/Tk’s visual toolkit. It is modelled on
Ousterhout’s Tk 4.0 [1,2], commonly deployed with the scripting language Tcl as ‘Tcl/Tk’.
Although inspired by Tk 4.0, Inferno’s Tk implementation is new, and unrelated to Ousterhout’s.
It is intended to be used with the new programming language Limbo, not Tcl. Limbo/Tk appli
cations make extensive use of Limbo’s concurrent programming constructions and data struc
tures, and that is reflected in the interface. Section 9 of Volume 1 of the Inferno Programmer’s Man
ual provides a detailed reference for Limbo/Tk. This paper provides an overview of its use in
some simple staged examples, and concludes with a summary of the differences between the
Limbo/Tk implementation and Tk 4.0. In the rest of this paper, ‘Tk’ refers to Limbo/Tk, and ‘Tk
4.0’ refers to Ousterhout’s original implementation.

1. The Limbo/Tk environment

Limbo applications access Tk by means of a builtin module, $Tk . The standard distribution also
includes the window manager wmand the Limbo module Wmlib . Unlike Tk , Wmlib is not built
in but implemented in Limbo by /appl/lib/wmlib.b . It simplifies and standardises the con
struction of windowed applications; it also contains some graphical devices such as tabbed note
books not provided directly by Limbo/Tk. The essentials of both Tk and Wmlib are discussed
here.

Programmers usually need only three functions from the Tk module:

" toplevel
Creates a graphical window � a Tk ‘top level’ widget � that can be used to build a
Limbo/Tk application. The function returns a reference to an adt Tk->Toplevel adt that
represents the window in subsequent Tk operations.

" cmd
Creates and arranges graphic objects within the toplevel window by processing Limbo/Tk
command strings. The interface to Tk is primarily the passing of strings between the appli
cation and Tk of the toolkit using cmd. Each call to cmd returns a string representing the
result of the Tk command; a string starting with ‘! ’ diagnoses an error.

" namechan
Gives a name within Tk (in the scope of a given window) to a Limbo chan of string
that Tk commands can use to send data to a Limbo program.

Other functions in the module have more specialised uses that will not be discussed here. For
instance, mouse and keyboard are used by a window manager to send mouse and keyboard
events to the Tk implementation for distribution to applications.

Even toplevel is not commonly used in the window manager environment: a function
Wmlib->titlebar provides the usual interface to toplevel . The lowlevel interface will be
described first, for completeness, then the normal case using titlebar .

 2

2. Basic Limbo/Tk

This section shows a simple Tk application that uses only the fundamental Tk functions.

2.1. Preliminaries

The example assumes that the Tk module is loaded as tk :

include "tk.m";
tk: Tk;
...

init(ctxt: ref Draw->Context, nil: list of string)
{

tk = load Tk Tk->PATH;
...

}

2.2. Creating a toplevel

The following fragment makes the Limbo identifier top refer to a new ref Tk->Toplevel for
use in later Tk commands:

top := tk->toplevel(ctxt.screen, "-x 150 -y 150");

The upper left corner of this window will be at point (150, 150), where (0,0) is the upper left cor
ner of the screen; x coordinates increase from left to right, and y coordinates increase from top to
bottom.

In general, Tk->toplevel takes a screen argument and a string containing further options, and
it returns a reference to a toplevel Limbo/Tk widget on the given screen. The options argument
contains -option value pairs, such as -relief raised . As well as the generic options,
toplevel accepts the options -x int and -y int to specify the upper left corner of the toplevel
widget, where (0,0) is the top left corner of the screen, and -debug bool to cause a trace of all Tk
commands to be printed, if the boolean value is true.

2.3. Creating a named channel to Tk

The following fragment creates a chan of string called c , then associates the name cmdchan
within Tk with the Limbo channel c :

c := chan of string;
tk->namechan(top, c, "cmdchan");

The named channel cmdchan can now be used in a special Tk send command to send strings to
be processed by a Limbo program, typically notifying it of an event. Note that the Limbo identi
fer name need not match the name given to Tk, although it is invariably easier to follow the code
if the two are the same.

2.4. Defining and positioning widgets

The following fragment uses tk->cmd to define four widgets: two buttons, a label, and an entry
widget. The widgets are positioned in their parent window (in this case the toplevel window
top) using the Tk command pack :

define widgets
tk->cmd(top, "button .b1 -text Exit -command {send cmdchan exit}");
tk->cmd(top, "button .b2 -text Send -command {send cmdchan send}");
tk->cmd(top, "label .l -text {Name: }");
tk->cmd(top, "entry .e");

bind newline character in entry widget to command
tk->cmd(top, "bind .e <Key-\n> {send cmdchan send}");

pack widgets
tk->cmd(top, "pack .b1 .b2 .l .e -side left; update");

 3

Figure 1. Two buttons, a label and an entry widget.

This particular pack command packs the widgets named .b1 , .b2 , .l , and .e into the top win
dow beginning at the left side. The update command forces Tk to update the screen right away.
The result is shown in Figure 1.

Entering a newline (‘return’ or ‘enter’ key)�the character ‘\n ’ in Limbo� in the entry box results
in the execution of the Tk command {send cmdchan send} , because of the binding set by
bind .e <Key-\n> previously executed by tk->cmd . The bind command is often used to
bind specific widget events (including key presses, mouse button presses, and mouse motion) to
Tk send commands.

2.5. Processing widget events

This next fragment defines what will happen when a user selects either the Exit or the Send
buttons. The Exit behaviour is simple: the program ends. If a user touches Send, the program
executes tk->cmd to get whatever text is in the entry widget .e then prints it to standard output.

for(;;) {
s := <- c;
case s {
"exit" =>

return;

"send" =>
sys->print("name was: %s\n", tk->cmd(top, ".e get"));

}
}

3. Example using Tk and Wmlib

This section uses both Tk and Wmlib to create a simple window manager application with a title
bar, including resize and exit buttons. This is the usual way to create new windows.

4. Preamble

The example assumes that the Tk module is loaded as before, as module variable tk , but further
more that the Wmlib module is also loaded, as wmlib :

include "tk.m";
tk: Tk;

include "wmlib.m";
wmlib: Wmlib;
...
tk = load Tk Tk->PATH;
wmlib = load Wmlib Wmlib->PATH;
wmlib->init();

Note that wmlib->init is called once to initialise the wmlib module just loaded, before any
other functions are called.

In window manager applications the Tk->toplevel function is not normally used directly.
Instead, a window manager interface is used to create both the top level widget and a channel to
receive events from the window manager. The titlebar function has the signature:

titlebar(scr: Draw->Screen, tkargs: string, title: string, buts: int):
(ref Tk->Toplevel, chan of string);

The Screen is the one on which the window is to be created, normally the one passed
in the Context parameter to a program’s init function. The tkargs parameter can con

 4

trol the position and appearance of the window, but is best left nil (or the empty string)
to use the window manager’s defaults (see wmlib(2) for details otherwise), including
automatic placement. The title string gives the title that appears in the title bar. Finally,
buts is a bit set that selects the buttons to appear. The value Wmlib->Appl gives the
usual resize and hide buttons; the exit (delete) button always appears. The following is
used in the example:

(top, titlechan) := wmlib->titlebar(ctxt.screen, nil,
"Text Browser", Wmlib->Appl);

Note that titlebar returns a tuple. The first element is a reference to the Tk top level widget
for use in later Tk commands. The second element of the tuple is a Limbo channel of type chan
of string that passes window manager events to the application.

The channel titlechan is used by wmlib to send messages, but it is normally necessary to cre
ate a channel to Tk to receive events from widgets the application creates:

cmdchan := chan of string;
tk->namechan(top, cmdchan, "cmdchan");

4.1. Defining and positioning widgets

The function Wmlib->tkcmds takes two arguments, a ref Tk->Toplevel that identifies a top
level window, and an array of string . Each element of the array is a Tk command accept
able to Tk->cmd ; Wmlib->tkcmds simply applies it to each element of the array.

Most of the following fragment consists of Tk command strings that are members of the array of
strings tk_config . The comments describe the widgets being created. Not all widgets and
menu items in this example are functional. The last line executes the array of commands using
wmlib->tkcmds :

tk_config := array[] of {

define menubar frame, widget frame, text frame
"frame .mbar -relief groove -bd 2",
"frame .w",
"frame .text",

define and pack menus
"menubutton .file -text File -menu .file.m",
"menubutton .edit -text Edit -menu .edit.m",
"menubutton .help -text Help -menu .help.m",

"menu .file.m",
".file.m add command -label Send -command {send cmdchan send}",
".file.m add command -label Exit -command {send cmdchan exit}",
"menu .edit.m",
".edit.m add command -label Cut",

"menu .help.m",
".help.m add command -label Index -underline 0",

"pack .file .edit -side left -in .mbar; update",
"pack .help -side right -in .mbar",

define and pack buttons and text entry box (for file name)
"button .b1 -text Send -command {send cmdchan send}",
"button .b2 -text Open -command {send cmdchan open}",
"label .l -text {Name: }",

"entry .e",
"bind .e <Key-\n> {send cmdchan open}",

"pack .b1 .b2 .l .e -side left -in .w",

 5

Figure 2. A Wm application with a menu bar, a tool bar, and a text window.

define and pack text panel and its scrollbar
"text .t -yscrollcommand {.scroll set} -bg white",
"scrollbar .scroll -command {.t yview}",
"pack .scroll -side left -fill y -in .text",
"pack .t -side right -in .text -expand 1 -fill both",

pack frames
"pack .text -side bottom -fill both -expand 1",
"pack .mbar .w -fill x; update",
"pack propagate . 0",
};

run the Tk commands
wmlib->tkcmds(top, tk_config);

The result of executing these Tk commands is shown in Figure 2.

The arrays defining Tk widgets are sometimes made global to a module when they can sensibly
be used by several functions. It is also common to use small Limbo functions to replicate similar
widgets by building Tk commands from the value of parameters, using Limbo string concatena
tion or sys->sprint .

4.2. Processing widget events

This fragment uses an alt block to wait for strings to arrive from either titlechan or
cmdchan .

When a string is received on titlechan , the case statement either handles it directly (as with
exit) or passes it to wmlib->titlectl for normal handling by the window manager.

When a string is received on cmdchan , the program acts accordingly: it writes the text in the
entry widget to standard output (send); calls do_open to open the file name currently in the
entry box (open); or returns from the processing loop (exit).

 6

for(;;) {
alt {
s := <-titlechan => # message from title bar buttons

case s {
"exit" =>

return;
* =>

wmlib->titlectl(top,s);
}

com := <-cmdchan => # message from widgets created above
case com {
"send" =>

sys->print("name was: %s\n", tk->cmd(top, ".e get"));
"open" =>

do_open(top, tk->cmd(top, ".e get"));
"exit" =>

return;
}

}
}

Although this example uses a Tk text entry widget, Wmlib provides a function filename that
pops up a graphical device that allows a user to select a file by typing a name, browsing the file
system, or a mixture of both. See wmlib(2) for details.

4.3. Putting text into the text widget

The do_open function below uses the buffered I/O module Bufio to read lines from the file
named in the entry widget and add them to the text currently in the text widget .t .

do_open(top: ref Tk->Toplevel, file: string)
{

iofd := bufio->open(file, Bufio->OREAD);
if(iofd == nil){

wmlib->dialog(top, "error -fg red", "Open file",
sys->sprint("%s: %r", file), 0, "Ok"::nil);

return;
}

tk->cmd(top, ".t delete 1.0 end");
tk->cmd(top, "cursor -bitmap cursor.wait");

for(;;){
line := iofd.gets(’\n’);
if(line == nil)

break;
tk->cmd(top, ".t insert end ’" + line);

}
tk->cmd(top, "cursor -default");

}

If the file cannot be opened, do_open calls wmlib->dialog to pop up a diagnostic message
panel, rather than (say) printing a message to standard error, and returns. If the file was opened,
do_open deletes the current contents of the frame, and reads the file into it, inserts one line at a
time. Tk allows the data inserted to contain embedded newlines, and a more efficient implemen
tation could read blocks of data from the file and insert them, but some care is required. A text
file in Inferno contains Unicode characters in UTFencoding, and the bytes of a single character
might be split across separate reads. Iobuf.gets by contrast is guaranteed to reassemble com
plete Unicode characters from the buffered input stream. A program using Iobuf.read (or
Sys->read) to fetch blocks of data would typically use Sys->utfbytes to find maximal
sequences of UTFencoded characters and insert large chunks of text at once. See the function
loadtfile in /appl/wm/edit.b for example.

 7

5. Limbo/Tk command syntax

Once a toplevel widget has been built, an application calls tk->cmd to issue commands to Tk
and receive results. This section describes in more detail the contents of the string argument that
conveys the commands.

5.1. Command strings

The command string may contain one or more commands, separated by semicolons. A semicolon
is not a command separator when it is nested in braces ({}) or brackets ([]), or it is escaped by a
backslash (\).

Each command is divided into words : sequences of characters separated by one or more blanks or
tabs, subject to the following quoting rules:

A word beginning with an opening brace ({) continues until the balancing closing brace (})
is reached. The outer brace characters are stripped. A backslash (\) can be used to escape a
brace, preventing special interpretation.

A word beginning with an opening bracket ([) continues until the balancing closing bracket
(]) is reached. The enclosed string is then evaluated as if it were a command string, and the
resulting value is used as the contents of the word.

At any point in the command string a single quote (’) causes the rest of the string to be
treated as one word.

Single commands are executed in order until they are all done or an error is encountered. By con
vention, an error is signalled by a return value starting with an exclamation mark. The return
value from cmd is the return value of the first errorproducing command or else the return value
of the final single command.

To execute a single command, the first word is examined. It can be one of the following:

� One of the following widget creating commands:

button menu
canvas menubutton
checkbutton radiobutton
entry scale
frame scrollbar
label text
listbox

The second word of each of these commands is the name of the widget to be created. The
remaining words are option/value pairs.

� A widget name (beginning with a dot ‘. ’) that corresponds to an existing widget. The sec
ond word gives the name of a particular widget subcommand and the remaining words are
arguments for the subcommand.

� A pack , bind , focus , grab , put , destroy , image , or update command. These com
mands manipulate existing widgets or control Tk. Most are the same as documented for Tk
4.0. The bind command is significantly different, and the image command is more lim
ited.

� The send command, which sends a string to a Limbo process. The second word is the
Tk name of a Limbo channel (previously registered with namechan), and the rest of the
command is sent as a single string along the channel.

� The variable command. Limbo/Tk generally does not provide the variables of Tcl/Tk;
radio buttons are an exception. The variable command takes the name of a variable
defined in a radio button as the second word, and the value of the variable is the result of
the command. Furthermore, there is one predefined variable whose value can be retrieved
this way: the lasterror variable is set every time a Tk command returns an error. The

 8

value is the offending command (possibly truncated) followed by the error return value.
The lasterror variable is cleared whenever it is retrieved using the variable command.
This allows several Tk commands to be executed without checking error returns each time.
A call to the variable command with lasterror at strategic points can make sure that
an unexpected error has not occurred.

� The cursor command. This command takes a number of option/value pairs to control the
appearance and placement of the cursor. Available options are: -x int and -y int , to change
the cursor position to align its hotpoint at the given point (in screen coordinates); -bitmap
filename or -image imagename to change the appearance of the cursor; and -default to
change back to the default appearance of the cursor.

Because the language accepted by the cmd function has no userdefined functions, no control
flow and very few variables, almost all applications need to have some of their logic in Limbo
programs. The modern concurrency constructions provided by Limbo � processes, channels,
send/receive operators and alt � replace unstructured interrupts (‘call backs’), often used by
other graphics systems, by structured control flow. (The Inferno shell does provide support,
however, for rapid prototyping using Tk and a scripting language: see the manual pages for sh
tk(1) and wish(1) in Volume 1.)

5.2. Widget options

In Tk, all widget creation commands, and all cget widget commands accept a common set of
generic options in addition to widgetspecific options. Except as noted otherwise, the meanings
are the same as they are in Tk 4.0. The allowable forms of things like color , dist , and font are
slightly different in Limbo/Tk. See types(9) in Volume 1 for precise definitions. The generic
options are as follows:

-activebackground color
-activeforeground color
-actwidth dist
-actheight dist

Note: the -actwidth and -actheight variables are overridden by the packer, but
are useful as arguments to cget to retrieve the actual width and height (inside the
border) of a widget after packing.

-background color (or -bg color)
-borderwidth dist (or -bd dist)
-font font
-foreground color (or -fg color)
-height dist
-padx dist
-pady dist
-relief relief
-state normal , -state active , or -state disabled

Note: -state is only relevant for some widgets (for example, entry widgets).

-selectbackground color
-selectborderwidth dist
-selectcolor color

Note: -selectcolor is the colour of the box in selection menu items.

-selectforeground colour
-width dist

In general, the manual page for each widget in section 9 of Volume 1 tells which of the generic Tk
options the widget accepts.

 9

The dist parameters are lengths, expressed in the following form: an optional minus sign, then
one or more decimal digits (with possible embedded decimal point), then an optional units speci
fier. The unit specifiers are the following:

c centimetres
m millimetres
i inches
p points
h height of widget’s font (*)
w width of ‘0’ character in widget’s font (*)

The ones marked (*) are specific to Limbo/Tk.

Tcl/Tk 4.0 widgets do not uniformly take -width and -height options; instead, each widget
may take either or both, and the interpretation of a number lacking a unit specifier varies from
widget to widget. For example, in Tk 4.0 -width 25 means 25 characters to an entry widget, but
25 pixels to a canvas widget. In Limbo/Tk, all widgets may specify width and height, and bare
numbers always mean screen pixels.

A colour parameter can be a colour name or an RGB value. Only a few names are known:

aqua fuchsia maroon purple yellow
black gray navy red
blue green olive teal
darkblue lime orange white

For RGB values, either #rgb or #rrggbb can be used, where r , rr , etc. are hexadecimal values for
the corresponding colour components.

A font parameter gives the full path name of an Inferno font file; for example,
/fonts/pelm/unicode.9.font .

A bitmap parameter is not used by any of the generic options, but is worth mentioning here.
Unlike Tk 4.0, a bitmap in Limbo/Tk is not restricted to a 1bit deep bitmap to be coloured with
foreground and background. Instead, it can be a fullcolour image (‘pixmap’ in X11 terminol
ogy), which is displayed as is. If bitmap begins with a ‘@’, the remaining characters should be the
path name of an Inferno image file. If bitmap begins with the character ‘<’, the remaining charac
ters must be a decimal integer giving a file descriptor number of an open file from which the bit
map can be loaded. Otherwise, bitmap should be the name of a bitmap file in the directory
/icons/tk .

Options not supported in Limbo/Tk

The following options provided by Tk 4.0 are not supported by any Limbo/Tk widget:

-cursor -insertofftime -wraplength
-disabledforeground -insertontime
-exportselection -insertwidth
-geometry -repeatdelay
-highlightbackground -repeatinterval
-highlightcolor -setgrid
-highlightthickness -takefocus
-insertbackground -textvariable
-insertborderwidth -troughcolor

6. Limbo/Tk commands

This section lists all the commands documented in the Tk 4.0 man pages, giving the differences
between the behaviour specified in those man pages and the behaviour implemented in
Limbo/Tk. Some common Tcl commands are listed as well. Bear in mind that some Tk 4.0
options are unsupported, as noted above.

 10

bell [-displayof window]
Not implemented.

bind widget <eventevent...event> command
bind widget <eventevent...event> + command

The bind command is perhaps the command that differs most from Tk 4.0. In general,
only a subset of its functionality is implemented. One difference is that widget must be
the name of an existing widget. The notion of a widget class is completely absent in
Limbo/Tk. Event sequence specifications are also more restricted. A sequence is either a
single character (rune), meaning a KeyPress of that character, or a sequence of events in
angle brackets. Events are separated by blanks or minus signs. See bind(9) for a complete
discussion.

bindtags window [taglist]
Not implemented.

button pathname [options ...]
As in Tk 4.0 (but note difference in units for -height and -width).

canvas pathname [options ...]
The Postscript subcommand is not implemented.

checkbutton pathname [options ...]
Unimplemented options: -indicatoron , -offvalue , -onvalue , and
-selectimage . The flash subcommand is not implemented.

clipboard operation
Not implemented.

pathname configure [option ...]
Configure options for widget pathname . Widgetspecific; see the manual entry for the
widget in section 9 of Volume 1.

destroy [window ...]
As in Tk 4.0, but note that ‘destroy . ’ is rarely needed because top level windows are
automatically destroyed by the Inferno garbage collector immediately when the last ref
erence vanishes.

entry pathname [options ...]
The scan subcommand is not implemented. Some key bindings are not implemented
when there is currently no way to type those keys to Inferno (for example, Home). Note
difference in units for -height and -width .

event operation
Not implemented: normally replaced by Tk send or Limbo channel send operation
within the application.

focus window
The focus model in Inferno is different. Only one widget has the keyboard focus at a
given time. Limbo/Tk does not maintain a private keyboard focus for each toplevel tree
and automatically move the focus there whenever the tree is entered. (Canvas and text
widgets, however, do maintain a private keyboard focus.) The Limbo/Tk focus com
mand moves the keyboard focus to the given window . By default, the first press of the
primary button in an entry , listbox or text widget causes the focus to be moved to
that widget. Just entering a menu widget gives it the focus. The -displayof , -force
and -lastfor options are not implemented.

frame pathname [options ...]
Unimplemented options: class , colormap , and visual .

grab window
grab option [arg ...]

Limbo/Tk implements only global grabs, so the -global option is not recognised. The

 11

grab current command is not implemented. The grab command is not recognised as
a synonym for grab set .

grid operation [arg ...]
Not implemented.

image create bitmap [name] [options]
image option [arg arg ...]

Only bitmap image types are implemented, but, as documented under bitmap , Inferno
‘bitmaps’ are not just 1bit deep; they encompass both bitmaps and ‘photo’ (colour)
images as provided by Tk/4.0. Limbo/Tk does not, however, recognise the wide variety
of graphics formats that Tk 4.0 does. Instead, only Inferno’s own format is supported
internally, and external programs are provided to convert between that and other for
mats such as JPEG. The file descriptor syntax for specifying bitmaps is useful when an
external program writes the bitmap to a file descriptor. If a maskfile is given, it may also
have a depth greater than 1 bit; the meaning is that if a pixel of the mask is nonzero then
the corresponding pixel of the image should be drawn. (But see the handling of bitmaps
used as stipples in canvas(9).) The -data and -maskdata options are not implemented.

label pathname [options ...]
Unimplemented options: -justify and -wraplength . Note difference in units for
-height and -width .

listbox pathname [options ...]
The bbox and scan subcommands are not implemented. Note difference in units for
-height and -width .

lower window
The belowThis optional parameter is not recognised.

menu pathname [options ...]
Unimplemented options: -postcommand , -tearoff , -tearoff command, and
-transient . In the add subcommand, the -accelerator , -indicatoron , and
-selectimage options are not implemented. In the index subcommand, the last and
pattern index forms are not implemented. The configure and entrycget subcom
mands are not implemented.

menubutton pathname [options ...]
Unimplemented options: -indicatoron , -justify , and -wraplength .

message pathname [options ...]
Not implemented (subsumed by label).

option operation [arg ...]
Not implemented. There is no option database.

pack option arg ...
pack slave ...[options ...]
pack configure slave ... [options ...]
pack forget slave ...
pack propagate master [0 1]
pack slaves master

The info subcommand is not implemented.

place operation [arg ...]
Not implemented.

radiobutton pathname [options ...]
Unimplemented options: -indicatoron , -justify , -selectimage , and
-wraplength . The flash subcommand is not implemented.

raise window
The aboveThis optional parameter is not recognised.

 12

scale pathname [options ...]
Unimplemented options: -digits and -variable .

scrollbar pathname [options ...]
The old syntax of set and get is not supported.

selection
Not implemented.

send channame string
Rather than sending data to a different application, the send command sends a given
string down the Limbo channel associated with channame , as set by namechan .

text pathname [options ...]
The dump subcommand is not implemented. The -regexp mode of the search subcom
mand is not implemented.

tk operation [arg ...]
Not implemented.

tkerror
Not implemented.

tkwait operation name
Not implemented.

toplevel pathname [option value...]
There is no toplevel Tk command implemented by the cmd function; instead, the Tk
module entry point toplevel is used to make toplevel widgets (windows) as described
above.

update
In Tcl/Tk, update is a Tcl command that invokes the ‘event handler loop’. In
Limbo/Tk, it flushes any pending updates to the screen. The optional idletasks argu
ment is not recognised.

winfo operation [arg ...]
Not implemented. Much of the information that winfo would return can be got by
applying cget to each widget.

wmoperation window [arg ...]
Not implemented.

6.1. References

1. John K Ousterhout, Tcl and the Tk Toolkit, AddisonWesley Publishing Company, Reading,
Massachusetts, 1994.

2. Paul Raines and Jeff Trantor, Tcl/Tk in a Nutshell , O’Reilly, Sebastopol, California, 1999.

3. B W Kernighan, ‘‘Descent into Limbo’’, elsewhere in this volume.

4. See drawintro(2), tk(2) and wmlib(2) in The Inferno Programmer’s Manual , Volume 1.

