code: 9ferno

ref: 7c22230886134121893f02ee283da85f3a6807e6
dir: /libfreetype/ftbbox.c/

View raw version
/***************************************************************************/
/*                                                                         */
/*  ftbbox.c                                                               */
/*                                                                         */
/*    FreeType bbox computation (body).                                    */
/*                                                                         */
/*  Copyright 1996-2001, 2002 by                                           */
/*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
/*                                                                         */
/*  This file is part of the FreeType project, and may only be used        */
/*  modified and distributed under the terms of the FreeType project       */
/*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
/*  this file you indicate that you have read the license and              */
/*  understand and accept it fully.                                        */
/*                                                                         */
/***************************************************************************/


  /*************************************************************************/
  /*                                                                       */
  /* This component has a _single_ role: to compute exact outline bounding */
  /* boxes.                                                                */
  /*                                                                       */
  /*************************************************************************/


#include <ft2build.h>
#include FT_BBOX_H
#include FT_IMAGE_H
#include FT_OUTLINE_H
#include FT_INTERNAL_CALC_H


  typedef struct  TBBox_Rec_
  {
    FT_Vector  last;
    FT_BBox    bbox;

  } TBBox_Rec;


  /*************************************************************************/
  /*                                                                       */
  /* <Function>                                                            */
  /*    BBox_Move_To                                                       */
  /*                                                                       */
  /* <Description>                                                         */
  /*    This function is used as a `move_to' and `line_to' emitter during  */
  /*    FT_Outline_Decompose().  It simply records the destination point   */
  /*    in `user->last'; no further computations are necessary since we    */
  /*    the cbox as the starting bbox which must be refined.               */
  /*                                                                       */
  /* <Input>                                                               */
  /*    to   :: A pointer to the destination vector.                       */
  /*                                                                       */
  /* <InOut>                                                               */
  /*    user :: A pointer to the current walk context.                     */
  /*                                                                       */
  /* <Return>                                                              */
  /*    Always 0.  Needed for the interface only.                          */
  /*                                                                       */
  static int
  BBox_Move_To( FT_Vector*  to,
                TBBox_Rec*  user )
  {
    user->last = *to;

    return 0;
  }


#define CHECK_X( p, bbox )  \
          ( p->x < bbox.xMin || p->x > bbox.xMax )

#define CHECK_Y( p, bbox )  \
          ( p->y < bbox.yMin || p->y > bbox.yMax )


  /*************************************************************************/
  /*                                                                       */
  /* <Function>                                                            */
  /*    BBox_Conic_Check                                                   */
  /*                                                                       */
  /* <Description>                                                         */
  /*    Finds the extrema of a 1-dimensional conic Bezier curve and update */
  /*    a bounding range.  This version uses direct computation, as it     */
  /*    doesn't need square roots.                                         */
  /*                                                                       */
  /* <Input>                                                               */
  /*    y1  :: The start coordinate.                                       */
  /*    y2  :: The coordinate of the control point.                        */
  /*    y3  :: The end coordinate.                                         */
  /*                                                                       */
  /* <InOut>                                                               */
  /*    min :: The address of the current minimum.                         */
  /*    max :: The address of the current maximum.                         */
  /*                                                                       */
  static void
  BBox_Conic_Check( FT_Pos   y1,
                    FT_Pos   y2,
                          FT_Pos   y3,
                          FT_Pos*  min,
                          FT_Pos*  max )
  {
    if ( y1 <= y3 )
    {
      if ( y2 == y1 )               /* Flat arc */
        goto Suite;
    }
    else if ( y1 < y3 )
    {
      if ( y2 >= y1 && y2 <= y3 )   /* Ascending arc */
        goto Suite;
    }
    else
    {
      if ( y2 >= y3 && y2 <= y1 )   /* Descending arc */
      {
        y2 = y1;
        y1 = y3;
        y3 = y2;
        goto Suite;
      }
    }

    y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );

  Suite:
    if ( y1 < *min ) *min = y1;
    if ( y3 > *max ) *max = y3;
  }


  /*************************************************************************/
  /*                                                                       */
  /* <Function>                                                            */
  /*    BBox_Conic_To                                                      */
  /*                                                                       */
  /* <Description>                                                         */
  /*    This function is used as a `conic_to' emitter during               */
  /*    FT_Raster_Decompose().  It checks a conic Bezier curve with the    */
  /*    current bounding box, and computes its extrema if necessary to     */
  /*    update it.                                                         */
  /*                                                                       */
  /* <Input>                                                               */
  /*    control :: A pointer to a control point.                           */
  /*    to      :: A pointer to the destination vector.                    */
  /*                                                                       */
  /* <InOut>                                                               */
  /*    user    :: The address of the current walk context.                */
  /*                                                                       */
  /* <Return>                                                              */
  /*    Always 0.  Needed for the interface only.                          */
  /*                                                                       */
  /* <Note>                                                                */
  /*    In the case of a non-monotonous arc, we compute directly the       */
  /*    extremum coordinates, as it is sufficiently fast.                  */
  /*                                                                       */
  static int
  BBox_Conic_To( FT_Vector*  control,
                 FT_Vector*  to,
                 TBBox_Rec*  user )
  {
    /* we don't need to check `to' since it is always an `on' point, thus */
    /* within the bbox                                                    */

    if ( CHECK_X( control, user->bbox ) )

      BBox_Conic_Check( user->last.x,
                        control->x,
                        to->x,
                        &user->bbox.xMin,
                        &user->bbox.xMax );

    if ( CHECK_Y( control, user->bbox ) )

      BBox_Conic_Check( user->last.y,
                        control->y,
                        to->y,
                        &user->bbox.yMin,
                        &user->bbox.yMax );

    user->last = *to;

    return 0;
  }


  /*************************************************************************/
  /*                                                                       */
  /* <Function>                                                            */
  /*    BBox_Cubic_Check                                                   */
  /*                                                                       */
  /* <Description>                                                         */
  /*    Finds the extrema of a 1-dimensional cubic Bezier curve and        */
  /*    updates a bounding range.  This version uses splitting because we  */
  /*    don't want to use square roots and extra accuracies.               */
  /*                                                                       */
  /* <Input>                                                               */
  /*    p1  :: The start coordinate.                                       */
  /*    p2  :: The coordinate of the first control point.                  */
  /*    p3  :: The coordinate of the second control point.                 */
  /*    p4  :: The end coordinate.                                         */
  /*                                                                       */
  /* <InOut>                                                               */
  /*    min :: The address of the current minimum.                         */
  /*    max :: The address of the current maximum.                         */
  /*                                                                       */
#if 0
  static void
  BBox_Cubic_Check( FT_Pos   p1,
                    FT_Pos   p2,
                    FT_Pos   p3,
                    FT_Pos   p4,
                    FT_Pos*  min,
                    FT_Pos*  max )
  {
    FT_Pos  stack[32*3 + 1], *arc;


    arc = stack;

    arc[0] = p1;
    arc[1] = p2;
    arc[2] = p3;
    arc[3] = p4;

    do
    {
      FT_Pos  y1 = arc[0];
      FT_Pos  y2 = arc[1];
      FT_Pos  y3 = arc[2];
      FT_Pos  y4 = arc[3];


      if ( y1 == y4 )
      {
        if ( y1 == y2 && y1 == y3 )                         /* Flat */
          goto Test;
      }
      else if ( y1 < y4 )
      {
        if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* Ascending */
          goto Test;
      }
      else
      {
        if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* Descending */
        {
          y2 = y1;
          y1 = y4;
          y4 = y2;
          goto Test;
        }
      }

      /* Unknown direction -- split the arc in two */
      arc[6] = y4;
      arc[1] = y1 = ( y1 + y2 ) / 2;
      arc[5] = y4 = ( y4 + y3 ) / 2;
      y2 = ( y2 + y3 ) / 2;
      arc[2] = y1 = ( y1 + y2 ) / 2;
      arc[4] = y4 = ( y4 + y2 ) / 2;
      arc[3] = ( y1 + y4 ) / 2;

      arc += 3;
      goto Suite;

   Test:
      if ( y1 < *min ) *min = y1;
      if ( y4 > *max ) *max = y4;
      arc -= 3;

    Suite:
      ;
    } while ( arc >= stack );
  }
#else

  static void
  test_cubic_extrema( FT_Pos    y1,
                      FT_Pos    y2,
                      FT_Pos    y3,
                      FT_Pos    y4,
                      FT_Fixed  u,
                      FT_Pos*   min,
                      FT_Pos*   max )
  {
 /* FT_Pos    a = y4 - 3*y3 + 3*y2 - y1; */
    FT_Pos    b = y3 - 2*y2 + y1;
    FT_Pos    c = y2 - y1;
    FT_Pos    d = y1;
    FT_Pos    y;
    FT_Fixed  uu;

    FT_UNUSED ( y4 );


    /* The polynom is                       */
    /*                                      */
    /*   a*x^3 + 3b*x^2 + 3c*x + d      .   */
    /*                                      */
    /* However, we also have                */
    /*                                      */
    /*   dP/dx(u) = 0       ,               */
    /*                                      */
    /* which implies that                   */
    /*                                      */
    /*   P(u) = b*u^2 + 2c*u + d            */

    if ( u > 0 && u < 0x10000L )
    {
      uu = FT_MulFix( u, u );
      y  = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );

      if ( y < *min ) *min = y;
      if ( y > *max ) *max = y;
    }
  }


  static void
  BBox_Cubic_Check( FT_Pos   y1,
                    FT_Pos   y2,
                    FT_Pos   y3,
                    FT_Pos   y4,
                    FT_Pos*  min,
                    FT_Pos*  max )
  {
    /* always compare first and last points */
    if      ( y1 < *min )  *min = y1;
    else if ( y1 > *max )  *max = y1;

    if      ( y4 < *min )  *min = y4;
    else if ( y4 > *max )  *max = y4;

    /* now, try to see if there are split points here */
    if ( y1 <= y4 )
    {
      /* flat or ascending arc test */
      if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
        return;
    }
    else /* y1 > y4 */
    {
      /* descending arc test */
      if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
        return;
    }

    /* There are some split points.  Find them. */
    {
      FT_Pos    a = y4 - 3*y3 + 3*y2 - y1;
      FT_Pos    b = y3 - 2*y2 + y1;
      FT_Pos    c = y2 - y1;
      FT_Pos    d;
      FT_Fixed  t;


      /* We need to solve "ax^2+2bx+c" here, without floating points!      */
      /* The trick is to normalize to a different representation in order  */
      /* to use our 16.16 fixed point routines.                            */
      /*                                                                   */
      /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after the            */
      /* the normalization.  These values must fit into a single 16.16     */
      /* value.                                                            */
      /*                                                                   */
      /* We normalize a, b, and c to "8.16" fixed float values to ensure   */
      /* that their product is held in a "16.16" value.                    */
      /*                                                                   */
      {
        FT_ULong  t1, t2;
        int       shift = 0;


        /* Technical explanation of what's happening there.            */
        /*                                                             */
        /*   The following computation is based on the fact that for   */
        /*   any value "y", if "n" is the position of the most         */
        /*   significant bit of "abs(y)" (starting from 0 for the      */
        /*   least significant bit), then y is in the range            */
        /*                                                             */
        /*                  "-2^n..2^n-1"                              */
        /*                                                             */
        /*   We want to shift "a", "b" and "c" concurrently in order   */
        /*   to ensure that they all fit in 8.16 values, which maps    */
        /*   to the integer range "-2^23..2^23-1".                     */
        /*                                                             */
        /*   Necessarily, we need to shift "a", "b" and "c" so that    */
        /*   the most significant bit of their absolute values is at   */
        /*   _most_ at position 23.                                    */
        /*                                                             */
        /*   We begin by computing "t1" as the bitwise "or" of the     */
        /*   absolute values of "a", "b", "c".                         */
        /*                                                             */
        t1  = (FT_ULong)((a >= 0) ? a : -a );
        t2  = (FT_ULong)((b >= 0) ? b : -b );
        t1 |= t2;
        t2  = (FT_ULong)((c >= 0) ? c : -c );
        t1 |= t2;

        /*   Now, the most significant bit of "t1" is sure to be the   */
        /*   msb of one of "a", "b", "c", depending on which one is    */
        /*   expressed in the greatest integer range.                  */
        /*                                                             */
        /*   We now compute the "shift", by shifting "t1" as many      */
        /*   times as necessary to move its msb to position 23.        */
        /*                                                             */
        /*   This corresponds to a value of t1 that is in the range    */
        /*   0x40_0000..0x7F_FFFF.                                     */
        /*                                                             */
        /*   Finally, we shift "a", "b" and "c" by the same amount.    */
        /*   This ensures that all values are now in the range         */
        /*   -2^23..2^23, i.e. that they are now expressed as 8.16     */
        /*   fixed float numbers.                                      */
        /*                                                             */
        /*   This also means that we are using 24 bits of precision    */
        /*   to compute the zeros, independently of the range of       */
        /*   the original polynom coefficients.                        */
        /*                                                             */
        /*   This should ensure reasonably accurate values for the     */
        /*   zeros.  Note that the latter are only expressed with      */
        /*   16 bits when computing the extrema (the zeros need to     */
        /*   be in 0..1 exclusive to be considered part of the arc).   */
        /*                                                             */
        if ( t1 == 0 )  /* all coefficients are 0! */
          return;

        if ( t1 > 0x7FFFFFUL )
        {
          do
          {
            shift++;
            t1 >>= 1;
          } while ( t1 > 0x7FFFFFUL );

          /* losing some bits of precision, but we use 24 of them */
          /* for the computation anyway.                          */
          a >>= shift;
          b >>= shift;
          c >>= shift;
        }
        else if ( t1 < 0x400000UL )
        {
          do
          {
            shift++;
            t1 <<= 1;
          } while ( t1 < 0x400000UL );

          a <<= shift;
          b <<= shift;
          c <<= shift;
        }
      }

      /* handle a == 0 */
      if ( a == 0 )
      {
        if ( b != 0 )
        {
          t = - FT_DivFix( c, b ) / 2;
          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
        }
      }
      else
      {
        /* solve the equation now */
        d = FT_MulFix( b, b ) - FT_MulFix( a, c );
        if ( d < 0 )
          return;

        if ( d == 0 )
        {
          /* there is a single split point at -b/a */
          t = - FT_DivFix( b, a );
          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
        }
        else
        {
          /* there are two solutions; we need to filter them though */
          d = FT_SqrtFixed( (FT_Int32)d );
          t = - FT_DivFix( b - d, a );
          test_cubic_extrema( y1, y2, y3, y4, t, min, max );

          t = - FT_DivFix( b + d, a );
          test_cubic_extrema( y1, y2, y3, y4, t, min, max );
        }
      }
    }
  }

#endif


  /*************************************************************************/
  /*                                                                       */
  /* <Function>                                                            */
  /*    BBox_Cubic_To                                                      */
  /*                                                                       */
  /* <Description>                                                         */
  /*    This function is used as a `cubic_to' emitter during               */
  /*    FT_Raster_Decompose().  It checks a cubic Bezier curve with the    */
  /*    current bounding box, and computes its extrema if necessary to     */
  /*    update it.                                                         */
  /*                                                                       */
  /* <Input>                                                               */
  /*    control1 :: A pointer to the first control point.                  */
  /*    control2 :: A pointer to the second control point.                 */
  /*    to       :: A pointer to the destination vector.                   */
  /*                                                                       */
  /* <InOut>                                                               */
  /*    user     :: The address of the current walk context.               */
  /*                                                                       */
  /* <Return>                                                              */
  /*    Always 0.  Needed for the interface only.                          */
  /*                                                                       */
  /* <Note>                                                                */
  /*    In the case of a non-monotonous arc, we don't compute directly     */
  /*    extremum coordinates, we subdivise instead.                        */
  /*                                                                       */
  static int
  BBox_Cubic_To( FT_Vector*  control1,
                 FT_Vector*  control2,
                 FT_Vector*  to,
                 TBBox_Rec*  user )
  {
    /* we don't need to check `to' since it is always an `on' point, thus */
    /* within the bbox                                                    */

    if ( CHECK_X( control1, user->bbox ) ||
         CHECK_X( control2, user->bbox ) )

        BBox_Cubic_Check( user->last.x,
                          control1->x,
                          control2->x,
                          to->x,
                          &user->bbox.xMin,
                          &user->bbox.xMax );

    if ( CHECK_Y( control1, user->bbox ) ||
         CHECK_Y( control2, user->bbox ) )

        BBox_Cubic_Check( user->last.y,
                          control1->y,
                          control2->y,
                          to->y,
                          &user->bbox.yMin,
                          &user->bbox.yMax );

    user->last = *to;

    return 0;
  }


  /* documentation is in ftbbox.h */

  FT_EXPORT_DEF( FT_Error )
  FT_Outline_Get_BBox( FT_Outline*  outline,
                       FT_BBox     *abbox )
  {
    FT_BBox     cbox;
    FT_BBox     bbox;
    FT_Vector*  vec;
    FT_UShort   n;


    if ( !abbox )
      return FT_Err_Invalid_Argument;

    if ( !outline )
      return FT_Err_Invalid_Outline;

    /* if outline is empty, return (0,0,0,0) */
    if ( outline->n_points == 0 || outline->n_contours <= 0 )
    {
      abbox->xMin = abbox->xMax = 0;
      abbox->yMin = abbox->yMax = 0;
      return 0;
    }

    /* We compute the control box as well as the bounding box of  */
    /* all `on' points in the outline.  Then, if the two boxes    */
    /* coincide, we exit immediately.                             */

    vec = outline->points;
    bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
    bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
    vec++;

    for ( n = 1; n < outline->n_points; n++ )
    {
      FT_Pos  x = vec->x;
      FT_Pos  y = vec->y;


      /* update control box */
      if ( x < cbox.xMin ) cbox.xMin = x;
      if ( x > cbox.xMax ) cbox.xMax = x;

      if ( y < cbox.yMin ) cbox.yMin = y;
      if ( y > cbox.yMax ) cbox.yMax = y;

      if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
      {
        /* update bbox for `on' points only */
        if ( x < bbox.xMin ) bbox.xMin = x;
        if ( x > bbox.xMax ) bbox.xMax = x;

        if ( y < bbox.yMin ) bbox.yMin = y;
        if ( y > bbox.yMax ) bbox.yMax = y;
      }

      vec++;
    }

    /* test two boxes for equality */
    if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax ||
         cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax )
    {
      /* the two boxes are different, now walk over the outline to */
      /* get the Bezier arc extrema.                               */

      static const FT_Outline_Funcs  bbox_interface =
      {
        (FT_Outline_MoveTo_Func) BBox_Move_To,
        (FT_Outline_LineTo_Func) BBox_Move_To,
        (FT_Outline_ConicTo_Func)BBox_Conic_To,
        (FT_Outline_CubicTo_Func)BBox_Cubic_To,
        0, 0
      };

      FT_Error   error;
      TBBox_Rec  user;


      user.bbox = bbox;

      error = FT_Outline_Decompose( outline, &bbox_interface, &user );
      if ( error )
        return error;

      *abbox = user.bbox;
    }
    else
      *abbox = bbox;

    return FT_Err_Ok;
  }


/* END */