The Inferno Shell

Roger Peppé
rog@uitanuova.com

ABSTRACT

The Inferno shell sk is a reasonably small shell that brings together aspects of several
other shells along with Inferno’s dynamically loaded modules, which it uses for much of
the functionality traditionally built in to the shell. This paper focuses principally on the
features that make it unusual, and presents an example “network chat” application writ-
ten entirely in sh script.

Introduction

Shells come in many shapes and sizes. The Inferno shell si (actually one of three shells supplied with
Inferno) is an attempt to combine the strengths of a Unix-like shell, notably Tom Duff’s rc, with some of the
features peculiar to Inferno. It owes its largest debt to rc, which provides almost all of the syntax and most
of the semantics too; when in doubt, I copied rc’s behaviour. In fact, I borrowed as many good ideas as I
could from elsewhere, inventing new concepts and syntax only when unbearably tempted. See Credits for a
list of those I could remember.

This paper does not attempt to give more than a brief overview of the aspects of sh which it holds in com-
mon with Plan 9’s rc. The reader is referred to sh(1) (the definitive reference) and Tom Duff’s paper “Rc -
The Plan 9 Shell”. I have occasionally pinched examples from the latter, so the differences are easily con-
trasted.

Overview

Sh is, at its simplest level, a command interpreter that will be familiar to all those who have used the
Bourne-shell, C shell, or any of the numerous variants thereof (e.g. bash, ksh, tcsh). All of the following
commands behave as expected:

date

cat /lib/keyboard

Is -1 > file.names

Is -I /dis >> file.names
wc <file

echo [a-f]*.b

Is | we

Is; date

limbo *.b &

An rc concept that will be less familiar to users of more conventional shells is the réle of lists in the shell.
Each simple sh command, and the value of any sh environment variable, consists of a list of words. Sh lists
are flat, a simple ordered list of words, where a word is a sequence of characters that may include white-
space or characters special to the shell. The Bourne-shell and its kin have no such concept, which means that
every time the value of any environment variable is used, it is split into blank separated words. For
instance, the command:

x="-I /lib/keyboard’
Is $x

would in many shells pass the two arguments “-I " and “/lib/keyboard " to the Is command. In sh, it
will pass the single argument ““-I /lib/keyboard .

The following aspects of sh’s syntax will be familiar to users of rc.

File descriptor manipulation:

echo hello, world > /dev/null >[1=2]

Environment variable values:
echo $var
Count number of elements in a variable:
echo $#var
Run a command and substitute its output:
rm‘{grep -1i mcrosoft *}
Lists:
echo (((a b) c) d)
List concatenation:
cat /appl/cmd/sh/~(std regex expr)”.b

To the above, sh adds a variant of the * {} operator: "{}, which is the same except that it does not split the
input into tokens, for example:

for i in "{echo one two three} {
echo | oop

}

will only print | oop once.

Sh also adds a new redirection operator <>, which opens the standard input (by default) for reading and
writing.

Command blocks

Possibly sh’s most significant departure from the norm is its use of command blocks as values. In a conven-
tional shell, a command block groups commands together into a single syntactic unit that can then be used
wherever a simple command might appear. For example:

{

echo hello
echo goodbye
} > /dev/nul

Sh allows this, but it also allows a command block to appear wherever a normal word would appear. In this
case, the command block is not executed immediately, but is bundled up as if it was a single quoted word.
For example:

cmd = {
echo hello
echo goodbye

}

will store the contents of the braced block inside the environment variable $cnd. Printing the value of $crd
gets the block back again, for example:

echo $cnd
gives
{echo hel | o; echo goodbye}

Note that when the shell parsed the block, it ignored everything that was not syntactically relevant to the
execution of the block; for instance, the white space has been reduced to the minimum necessary, and the
newline has been changed to the functionally identical semi- colon.

It is also worth pointing out that echo is an external module, implementing only the standard Command (2)
interface; it has no knowledge of shell command blocks. When the shell invokes an external command, and
one of the arguments is a command block, it simply passes the equivalent string. Internally, built in com-
mands are slightly different for efficiency’s sake, as we will see, but for almost all purposes you can treat
command blocks as if they were strings holding functionally equivalent shell commands.

This equivalence also applies to the execution of commands. When the shell comes to execute a simple
command (a sequence of words), it examines the first word to decide what to execute. In most shells, this
word can be either the file name of an external command, or the name of a command built in to the shell
(e.g. exit).

Sh follows these conventional rules, but first, it examines the first character of the first word, and if it is an
open brace ({) character, it treats it as a command block, parses it, and executes it according to the normal
syntax rules of the shell. For the duration of this execution, it sets the environment variable $* to the list of
arguments passed to the block. For example:

{echo $*} hello world
is exactly the same as

echo hello world

Execution of command blocks is the same whether the command block is just a string or has already been
parsed by the shell. For example:

{echo hel |l o}
is exactly the same as
"{echo hell o}’

The only difference is that the former case has its syntax checked for correctness as soon as the shell sees the
script; whereas if the latter contained a malformed command block, a syntax error will be raised only when
it comes to actually execute the command.

The shell’s treatment of braces can be used to provide functionality similar to the eval command that is
built in to most other shells.

cmd = " echo hello; echo goodbye’
{"~scmdn)

In other words, simply by surrounding a string by braces and executing it, the string will be executed as if it
had been typed to the shell. Note the use of the caret (*) string concatenatation operator. Sh does provide
‘free carets’ in the same way as rc, so in the previous example

{ $cnd’ }’
would work exactly the same, but generally, and in particular when writing scripts, it is good style to make

the carets explicit.

Assignment and scope

The assignment operator in sh, in common with most other shells is =.
x=a b cd

assigns the four element list (a b ¢ d) to the environment variable named X. The value can later be
extracted with the $ operator, for example:

echo $x
will print
abcd

Sh also implements a form of local variable. An execution of a braced block command creates a new scope
for the duration of that block; the value of a variable assigned with : = in that block will be lost when the
block exits. For example:

x = hello
{x := goodbye }
echo $x

will print “hello”. Note that the scoping rules are dynamic - variable references are interpreted relative to
their containing scope at execution time. For example:

X := hello
cnd : = {echo $x}
{
X := goodbye
$cnd
}

wil print “goodbye”’, not “hello”. For one way of avoiding this problem, see “‘Lexical binding’’ below.

One late, but useful, addition to the shell’s assignment syntax is tuple assignment. This partially makes up
for the lack of list indexing primitives in the shell. If the left hand side of the assignment operator is a list of
variable names, each element of the list on the right hand side is assigned in turn to its respective variable.
The last variable mentioned gets assigned all the remaining elements. For example, after:

(abc) :=(one tw three four five)
aisone, b is t wo, and ¢ contains the three element list (t hree four five). For example:
(first var) = $var

knocks the first element off $var and puts itin $first.

One important difference between sh’s variables and variables in shells under Unix- likeoperating systems
derives from the fact that Inferno’s underlying process creation primitive is spawn, not fork. This means
that, even though the shell might create a new process to accomplish an I/O redirection, variables changed
by the sub- processare still visible in the parent process. This applies anywhere a new process is created that
runs synchronously with respect to the rest of the shell script - i.e. there is no chance of parallel access to the
environment. For example, it is possible to get access to the status value of a command executed by the * {}
operator:

files='{du -a; dustatus = $status}
if {! ~ $dustatus "'} {
echo du failed

}

When the shell does spawn an asynchronous process (background processes and pipelines are the two occa-
sions that it does so), the environment is copied so changes in one process do not affect another.

Loadable modules

The ability to pass command blocks as values is all very well, but does not in itself provide the programma-
bility that is central to the power of shell scripts and is built in to most shells, the conditional execution of
commands, for instance. The Inferno shell is different; it provides no programmability within the shell
itself, but instead relies on external modules to provide this. It has a built in command | oad that loads a
new module into the shell. The module that supports standard control flow functionality and a number of
other useful tidbits is called st d.

| oad std

loads this module into the shell. St d is a Dis module that implements the Shel | bui | ti n interface; the
shell looks in the directory / di s/ sh for the module file, in this case / di s/ sh/ st d. di s.

When a module is loaded, it is given the opportunity to define as many new commands as it wants. Per-
haps slightly confusingly, these are known as “’built- in” commands (or just “builtins”), to distinguish them
from commands executed in a separate process with no access to shell internals. Built- incommands run in
the same process as the shell, and have direct access to all its internal state (environment variables, com-
mand line options, and state stored within the implementing module itself). It is possible to find out what
built- in commands are currently defined with the command | oaded. Before any modules have been
loaded, typing

| oaded

produces:

builtin builtin
exit builtin

| oad builtin

|l oaded builtin
run builtin

unload builtin
whatis builtin
${builtin} builtin
${| oaded} builtin
${ quot e} builtin
${unquote} builtin

These are all the commands that are built in to the shell proper; I'll explain the ${} commands later. After
loading st d, executing | oaded produces:

! std

and std

appl y std

builtin builtin
exit builtin
flag std

fn std

for std

getlines std

if std

| oad builtin

|l oaded builtin

or std

pctl std

rai se std

rescue std

run builtin

status std

subfn std

unload builtin
whatis builtin
whil e std

~ std

${builtin} builtin
${env} std

${ hd} std

${i ndex} std
${join} std

${ | oaded} builtin
${ par se} std
${pid} std

${ pi pe} std

${ quot e} builtin
${split} std
${tl} std
${unquote} builtin

The name of each command defined by a loaded module is followed by the name of the module, so you can
see that in this case st d has defined commands such as i f and whi | e. These commands are reminiscent of
the commands built in to the syntax of other shells, but have no special syntax associated with them: they
obey the normal argument gathering and execution semantics.

As an example, consider the f or command.
for i inabcd{

echo $i

}

This command traverses the list (a b ¢ d) executing { echo $i} with $i set to each element in turn. In
rc, this might be written

for (i inabcd {
echo $i

}

and in fact, in sh, this is exactly equivalent. The round brackets denote a list and, like rc, all lists are flat-
tened before passing to an executed command. Unlike the f or command in rc, the braces around the com-
mand are not optional; as with the arguments to a normal command, gathering of arguments stops at a
newline. The exception to this rule is that newlines within brackets are treated as white space. This last rule
also applies to round brackets, for example:

(for i in
a
b
c
d
{

echo $i}
)

does the same thing. This is very useful for commands that take multiple command block arguments, and
is actually the only line continuation mechanism that sh provides (the usual backslash (\) character is not in
any way special to sh).

Control structures

Inferno commands, like shell commands in Unix or Plan 9, return a status when they finish. A command’s
status in Inferno is a short string describing any error that has occurred; it can be found in the environment
variable $st at us. This is the value that commands defined by st d use to determine conditional execution
- if it is empty, it is true; otherwise false. St d defines, for instance, a command ~ that provides a simple pat-
tern matching capability. Its first argument is the string to test the patterns against, and subsequent argu-
ments give the patterns, in normal shell wildcard syntax; its status is true if there is a match.

~ sh.y "*.y
~ std.b "*.y’

give true and false statuses respectively. A couple of pitfalls lurk here for the unwary: unlike its ¢ name-
sake, the patterns are expanded by the shell if left unquoted, so one has to be careful to quote wildcard char-
acters, or escape them with a backslash if they are to be used literally. Like any other command, ~ receives
a simple list of arguments, so it has to assume that the string tested has exactly one element; if you provide
a null variable, or one with more than one element, then you will get unexpected results. If in doubt, use
the $" operator to make sure of that.

Used in conjunction with the $# operator, ~ provides a way to check the number of elements in a list:
~ $#var 0

will be true if $var is empty.

This can be tested by the i f command, which accepts command blocks for its arguments, executing its sec-
ond argument if the status of the first is empty (true). For example:

if {~ $#var 0} {
echo ' $var has no el enents’

}

Note that the start of one argument must come on the same line as the end of of the previous, otherwise it
will be treated as a new command, and always executed. For example:

if {~ $#var 0}
{echo ’"$var has no elenents’} # this will always be executed

The way to get around this is to use list bracketing, for example:

(if {~ $#var 0}
{echo ’'$var has no elenents’}

)

will have the desired effect. The i f command is more general than rc’s i f, in that it accepts an arbitrary
number of condition/action pairs, and executes each condition in turn until one is true, whereupon it exe-

cutes the associated action. If the last condition has no action, then it acts as the ““else’’ clause in the i f. For
example:

(if {~ $#var 0} {
echo zero el ements

}
{~ $#var 1} {
echo one el ement

}

{echo nore than one el enent}

)

St d provides various other control structures. And and or provide the equivalent of rc’s & and | | opera-
tors. They each take any number of command block arguments and conditionally execute each in turn. And
stops executing when a block’s status is false, or when a block’s status is true:

and {~ $#var 1} {~ $var '*.sbl’} {echo variable ends in .sbl}
(or {nount /dev/eia0 /n/renote}
{echo nmount has failed with $status}

)

An extremely easy trap to fall into is to use $* inside a block assuming that its value is the same as that out-
side the block. For instance:

this will not work
if {~ $#* 2} {echo two argunents}

It will not work because $* is set locally for every block, whether it is given arguments or not. A solution is
to assign $* to a variable at the start of the block:

args = $*
if {~ $#args 2} {echo two argunents}

Whi | e provides looping, executing its second argument as long as the status of the first remains true. As
the status of an empty block is always true,

while {} {echo yes}

will loop forever printing “yes”. Another looping command is get | i nes, which loops reading lines from
its standard input, and executing its command argument, setting the environment variable $I i ne to each
line in turn. For example:

getlines {
echo '# $line
} <x.b

will print each line of the file x. b preceded by a # character.

Exceptions

When the shell encounters some error conditions, such as a parsing error, or a redirection failure, it prints a
message to standard error and raises an exception. In an interactive shell this is caught by the interactive
command loop; in a script it will cause an exit with a false status, unless handled.

Exceptions can be handled and raised with the r escue and r ai se commands provided by st d. An excep-
tion has a short string associated with it.

raise error
will raise an exception named “error”.

rescue error {echo an error has occurred} {
command

}

will execute conmmand and will, in the event that it raises an err or exception, print a diagnostic message.
The name of the exception given to r escue can end in an asterisk (*), which will match any exception start-
ing with the preceding characters. The * needs quoting to avoid being expanded as a wildcard by the shell.

rescue '*' {echo caught an exception $exception} {
command

}

will catch all exceptions raised by command, regardless of name. Within the handler block, r escue sets the
environment variable $except i on to the actual name of the exception caught.

Exceptions can be caught only within a single process - if an exception is not caught, then the name of the
exception becomes the exit status of the process. As sh starts a new process for commands with redirected
1/0, this means that

raise error
echo got here

behaves differently to:

raise error > /dev/null
echo got here

The former prints nothing, while the latter prints “got here”.

The exceptions break and conti nue are recognised by st d’s looping commands for, while, and
getlines. A break exception causes the loop to terminate; a cont i nue exception causes the loop to con-
tinue as before. For example:
for i in* {
if {~8$ "r~} {
echo found $i
rai se break

}

will print the name of the first file beginning with

o
T

in the current directory.

Substitution builtins

In addition to normal commands, a loaded module can also define substitution builtin commands. These are
different from normal commands in that they are executed as part of the argument gathering process of a
command, and instead of returning an exit status, they yield a list of values to be used as arguments to a
command. They can be thought of as a kind of ‘active environment variable’, whose value is created every
time it is referenced. For example, the spl it substitution builtin defined by st d splits up a single argu-
ment into strings separated by characters in its first argument:

echo ${split e "hello there'}
will print
hllothr

Note that, unlike the conventional shell backquote operator, the result of the $ command is not re-
interpreted, for example:

for i in ${split e "hello there'} {

echo arg $i
}
will print
arg h
arg llo th
arg r

Substitution builtins can only be named as the initial command inside a dollar- referencedcommand block -
they live in a different namespace from that of normal commands. For instance, | oaded and ${ | oaded}
are quite distinct: the former prints a list of all builtin names and their defining modules, whereas the for-
mer yields a list of all the currently loaded modules.

St d provides a number of useful commands in the form of substitution builtins. ${j oi n} is the comple-
ment of ${ spl i t } : it joins together any elements in its argument list using its first argument as the separa-
tor, for example:

echo ${join . file tar gz}
will print:
file.tar.gz

The in- builtshell operator $" is exactly equivalent to ${j oi n} with a space as its first argument.

List indexing is provided with ${i ndex} , which given a numeric index and a list yields the index’th item in
the list (origin 1). For example:

echo ${index 4 one two three four five}
will print
f our

A pair of substitution builtins with some of the most interesting uses are defined by the shell itself:
${ quot e} packages its argument list into a single string in such a way that it can be later parsed by the
shell and turned back into the same list. This entails quoting any items in the list that contain shell
metacharacters, such as ’; “ or ‘&. For example:

x="a;” 'b" 'cd
echo $x
echo ${quote $x}

will print

a; bcd
a,” b'c d

Travel in the reverse direction is possible using ${ unquot e}, which takes a single string, as produced by
${ quot e}, and produces the original list again. There are situations in sh where only a single string can be
used, but it is useful to be able to pass around the values of arbitrary sh variables in this form; ${ quot e}
and ${ unquot e} between them make this possible. For instance the value of a sk list can be stored in a file
and later retrieved without loss. They are also useful to implement various types of behaviour involving
automatically constructed shell scripts; see “’Lexical binding”’, below, for an example.

Two more list manipulation commands provided by st d are ${ hd} and ${t |}, which mirror their Limbo
namesakes: ${ hd} returns the first element of a list, ${t |} returns all but the first element of a list. For
example:

x=one two three four
echo ${hd $x}
echo ${tl $x}

will print:

one
two three four

Unlike their Limbo counterparts, they do not complain if their argument list is not long enough; they just
yield a null list.

St d provides three other substitution builtins of note. ${ pi d} yields the process id of the current process.
${ pi pe} provides a somewhat more cumbersome equivalent of the >{} and <{} commands found in rc,
i.e. branching pipelines. For example:

cnp ${pipe from{old}} ${pipe from{new}

will regression- testa new version of a command. Using ${ pi pe} yields the name of a file in the namespace
which is a pipe to its argument command.

The substitution builtin ${ par se} is used to check shell syntax without actually executing a command. The
command:

x=${parse '{echo hello, world}'}

will return a parsed version of the string “echo hel | o, worl d”; if an error occurs, then a parse error
exception will be raised.

-10-

Functions

Shell functions are a facility provided by the st d shell module; they associate a command name with some
code to execute when that command is named.

fn hello {
echo hello, world

}

defines a new command, hel | o, that prints a message when executed. The command is passed arguments
in the usual way, for example:

fn renovens {
for i in $* {
if {grep -s Mcrosoft $i} {
rm $i
}
}
}

renovens *

will remove all files in the current directory that contain the string ““Microsoft”.

The st at us command provides a way to return an arbitrary status from a function. It takes a single argu-
ment - its exit status is the value of that argument. For instance:

fn false {
status fal se

}

fntrue {
status "’

}

It is also possible to define new substitution builtins with the command subf n: the value of $r esul t at the
end of the execution of the command gives the value yielded. For example:

subfn backwards {
for i in $* {
resul t=$i $result
}
}

echo ${backwards a b c 'd e’}
will reverse a list, producing;:
dechba

The commands associated with shell functions are stored as normal environment variables, and so are
exported to external commands in the usual way. Fn definitions are stored in environment variables start-
ing f n-; subf n definitions use environment variables starting sf n-. It is useful to know this, as the shell
core knows nothing of these functions - they look just like builtin commands defined by st d; looking at the
current definition of $f n- name is the only way of finding out the body of code associated with function
name.

Other loadable sh modules

In addition to st d, and t k, which is mentioned later, there are several loadable sh modules that extend sh’s
functionality.

Expr provides a very simple stack- based calculator, giving simple arithmetic capability to the shell. For
example:

| oad expr
echo ${expr 3 2 1 + x}

will print 9.

St ri ng provides shell level access to the Limbo string library routines. For example:

- 11 -

load string
echo ${tol ower 'Hello, WORLD }

will print
hello, world
Regex provides regular expression matching and substitution operations. For instance:

| oad regex
if {! match ~[a-z0-9]1+% $line} {
echo line contains invalid characters

}

Fi | e2chan provides a way for a shell script to create a file in the namespace with properties under its con-
trol. For instance:

| oad file2chan

(file2chan /chan/nyfile
{echo read request from/chan/ nyfil e}
{echo wite request to /chan/nyfil e}

)
Ar g provides support for the parsing of standard Unix- styleoptions.

Sh and Inferno devices

Devices under Inferno are implemented as files, and usually device interaction consists of simple strings
written or read from the device files. This is a happy coincidence, as the two things that sh does best are file
manipulation and string manipulation. This means that sh scripts can exploit the power of direct access to
devices without the need to write more long winded Limbo programs. You do not get the type checking
that Limbo gives you, and it is not quick, but for knocking up quick prototypes, or ““wrapper scripts”, it can
be very useful.

Consider the way that Inferno implements network access, for example. A file called / net / cs implements
DNS address translation. A string such as t cp! ww. vi t anuova. conl t el net is written to / net/ cs; the
translated form of the address is then read back, in the form of a (file, text) pair, where file is the name of a
clone file in the / net directory (e.g. / net/tcp/ cl one), and text is a translated address as understood by
the relevant network (e.g. 194. 217. 172. 25! 23). We can write a shell function that performs this transla-
tion, returning a triple (directory clonefile text):

subfn cs {
addr := $1
or {
<> /net/cs {
(if {echo -n $addr >[1=0]} {

(clone addr) := ‘{read 8192 0}
netdir := ${di rname $cl one}
resul t=$netdir $cl one $addr
P Ao
echo 'c¢s: cannot translate "' 7
$addr »
$status >[1=2]
status failed
}
)
}
} {raise "cs failed}
}
The code
<> /net/cs { ...}

opens / net / cs for reading and writing, on the standard input; the code inside the braces can then read and
write it. If the address translation fails, an error will be generated on the write, so the echo will fail - this is
detected, and an appropriate exit status set. Being a substitution function, the only way that cs can indicate

- 12 -

an error is by raising an exception, but exceptions do not propagate across processes (a new process is cre-
ated as a result of the redirection), hence the need for the status check and the raised exception on failure.

The external program r ead is invoked to make a single read of the result from /i b/ cs. It takes a block
size, and a read offset - it is important to set this, as the initial write of the address to /| i b/ cs will have
advanced the file offset, and we will miss a chunk of the returned address if we’re not careful.

Di r nane is a little shell function that uses one of the string builtin functions to get the directory name from
the pathname of the clone file. It looks like:

load string
subfn dirnanme {

result = ${hd ${splitr $1 /}}
}

Now we have an address translation function, we can access the network interface directly. There are three
main operations possible with Inferno network devices: connecting to a remote address, announcing the
availability of a local dial- inaddress, and listening for an incoming connection on a previously announced
address. They are accessed in similar ways (see ip(3) for details):

The dial and announce operations require a new net directory, which is created by reading the clone file -
this actually opens the ct | file in a newly created net directory, representing one end of a network connec-
tion. Reading a ct | file yields the name of the new directory; this enables an application to find the associ-
ated dat a file; reads and writes to this file go to the other end of the network connection. The listen opera-
tion is similar, but the new net directory is created by reading from an existing directory’s | i st en file.

Here is a sh function that implements some behaviour common to all three operations:

fn newnetcon {
(netdir constr datacnd) := $*
id:="{read 20 0}
or {~ $constr '’} {echo -n $constr >[1=0]} {
echo cannot $constr >[1=2]
raise failed
}
net := $netdir/"$id
$dat acnd <> $net”/data
}

It takes the name of a network protocol directory (e.g. / net/t cp), a possibly empty string to write into the
control file when the new directory id has been read, and a command to be executed connected to the newly
opened dat a file. The code is fairly straightforward: read the name of a new directory from standard input
(we are assuming that the caller of newnet con sets up the standard input correctly); then write the configu-
ration string (if it is not empty), raising an error if the write failed; then run the command, attached to the
dat a file.

We set up the $net environment variable so that the running command knows its network context, and can
access other files in the directory (the | ocal and r enot e files, for example). Given newnet con, the imple-
mentation of di al ,announce, and | i st en is quite easy:

fn announce {
(addr cnd) := $*
(netdir clone addr) := ${cs $addr}
newnet con $netdir ’announce '“$addr $cnd <> $cl one

}
fndial {

(addr cnd) := $*

(netdir clone addr) := ${cs $addr}

newnet con $netdir ’connect '~$addr $cnd <> $cl one
}

fnlisten {
newnet con ${di rnane $net} '’ $1 <> $net/listen

}

- 13-

Di al and announce differ only in the string that is written to the control file; | i st en assumes it is being
called in the context of an announce command, so can use the value of $net to open the | i st en file to
wait for incoming connections.

The upshot of these function definitions is that we can make connections to, and announce, services on the
network. The code for a simple client might look like:

di al tcp!somewhere. com 5432 {
echo connected to ‘{cat $net/renote}
echo hell o somewhere >[1=0]

}
A server might look like:

announce tcp! sonewhere. com 5432 {
listen {
echo got connection from‘{cat $net/renote}
cat

Sh and the windowing environment

The main interface to the Inferno graphics and windowing system is a textual one, based on Osterhaut’s Tk,
where commands to manipulate the graphics inside windows are strings using a uniform syntax not a mil-
lion miles away from the syntax of sh. (See section 9 of Volume 1 for details). The t k sh module provides
an interface to the Tk graphics subsystem, providing not only graphics capabilities, but also the channel
communication on which Inferno’s Tk event mechanism is based.

The Tk module gives each window a unique numeric id which is used to control that window.

| oad tk
wid:= ${tk window'M w ndow }

loads the tk module, creates a new window titled “My window’” and assigns its unique identifier to the
variable $wi d. Commands of the form tk $wi d tkcommand can then be used to control graphics in the
window. When writing tk applets, it is helpful to get feedback on errors that occur as tk commands are exe-
cuted, so here’s a function that checks for errors, and minimises the syntactic overhead of sending a Tk com-
mand:

fnx{
args := $*
or {tk $wid $args} {
echo error on tk cnd $"args’:’ $status
}
}

It assumes that $wi d has already been set. Using X, we could create a button in our new window:

X button .b -text {A button}
x pack .b -side top
X update

Note that the nice coincidence of the quoting rules of sh and tk mean that the unquoted sh command block
argument to the but t on command gets through to tk unchanged, there to become quoted text.

Once we’ve got a button, we want to know when it has been pressed. Inferno Tk sends events through
Limbo channels, so the Tk module provides access to simple string channels. A channel is created with the
chan command.

chan event

creates a channel named event. A send command takes a string to send down the channel, and the
${recv} builtin yields a received value. Both operations block until the transfer of data can proceed - as
with Limbo channels, the operation is synchronous. For example:

send event 'hello, world &
echo ${recv event}

- 14 -

will print “hello, world”. Note that the send and receive operations must execute in different processes,
hence the use of the & backgrounding operator. Although for implementation reasons they are part of the
Tk module, these channel operations are potentially useful in non- graphicalscripts - they will still work
fine if there’s no graphics context.

Thet k nanmechan command makes a channel known to Tk.
tk namechan $wi d event
Then we can get events from Tk:

X .b configure -command {send event buttonpressed}
while {} {echo ${recv event}} &

This starts a background process that prints a message each time the button is pressed. Interaction with the
window manager is handled in a similar way. When a window is created, it is automatically associated with
a channel of the same name as the window id. Strings arriving on this are window manager events, such as
resi ze and nove. These can be interpreted if desired, or forwarded back to the window manager for
default handling with t k wi nct|. The following is a useful idiom that does all the usual event handling
on a window:

while {} {tk winctl $wid ${recv $wid}} &

One thing worth knowing is that the default exi t action (i.e. when the user closes the window) is to kill all
processes in the current process group, so in a script that creates windows, it is usual to fork the process
group with pct| newgr p early on, otherwise it can end up killing the shell window that spawned it.

An example

By way of an example. I'll present a function that implements a simple network chat facility, allowing two
people on the network to send text messages to one another, making use of the network functions described
earlier.

The core is a function called chat which assumes that its standard input has been directed to an active net-
work connection; it creates a window containing an entry widget and a text widget. Any text entered into
the entry widget is sent to the other end of the connection; lines of text arriving from the network are
appended to the text widget.

The first part of the function creates the window, forks the process group, runs the window controller and
creates the widgets inside the window:

fn chat {
| oad tk
pctl newpgrp
wid = ${tk window '’ Chat’}
nl ="
' # new i ne
while {} {tk winctl $wid ${recv $wid}} &
X entry .e
x frame .f
X scrollbar .f.s -orient vertical -command {.f.t yview}
x text .f.t -yscrollcommand {.f.s set}
x pack .f.s -side left -fill y
X pack .f.t -side top -fill both -expand 1
x pack .f -side top -fill both -expand 1
X pack .e -side top -fill x
X pack propagate . O
X bind .e '<Key-'~$nl~" > {send event enter}
X update
chan event

tk namechan $wi d event event

The middle part of chat loops in the background getting text entered by the user and sending it across the
network (also putting a copy in the local text widget so that you can see what you have sent.

- 15-

while {} {
{} ${recv event}
txt 1= ${tk $wid .e get}
echo $txt >[1=0]
x .f.t insert end '’ nme: ' "$txt A$nl
X .e delete 0 end
x .f.t see end
X update
} &

Note the null command on the second line, used to wait for the receive event without having to deal with
the value (there’s only one event that can arrive on the channel, and we know what it is).

The final piece of chat gets lines from the network and puts them in the text widget. The loop will termi-
nate when the connection is dropped by the other party, whereupon the window closes and the chat fin-
ished:

getlines {
x .f.t insert end '’’you: '~$liner$nl
x .f.t see end
X update

}

tk winctl $wid exit

}

Now we can wrap up the network functions and the chat function in a shell script, to finish off the little
demo:

#1/di s/ sh

Include the earlier function definitions here.

fn usage {
echo 'usage: chat [-s] address’ >[1=2]
rai se usage

}

ar gs=%*
or {~ $#args 1 2} {usage}
(addr args) := $*
if {~ $addr -s} {
server
or {~ $#args 1} {usage}
(addr nil) := $args
announce $addr {
echo announced on ‘{cat $net/local}

while {} {
net := $net
listen {
echo got connection from*‘{cat $net/renote}
chat &
}
}
}
P A
or {~ $#args 0} {usage}
client
di al $addr {
echo nmade connection
chat
}
}

If this is placed in an executable script file named chat , then

chat -s tcp! mynachi ne. coml 5432

would announce a chat server using tcp on nmynmachi ne. com(the local machine) on port 5432.

- 16-

chat tcp! mymachi ne. coml 5432

would make a connection to the previous server; they would both pop up windows and allow text to be
typed in from either end.

Lexical binding

One potential problem with all this passing around of fragments of shell script is the scope of names. This
piece of code:

fnrunit {x := Two; $*}
X 1= One
runit {echo $x}

will print “Two”’, which is quite likely to confound the expectations of the person writing the script if they
did not know that r uni t set the value of $x before calling its argument script. Some functional languages
(and the es shell) implement lexical binding to get around this problem. The idea is to derive a new script
from the old one with all the necessary variables bound to their current values, regardless of the context in
which the script is later called.

Sh does not provide any explicit support for this operation; however it is possible to fake up a reasonably
passable job. Recall that blocks can be treated as strings if necessary, and that ${ quot e} allows the bun-
dling of lists in such a way that they can later be extracted again without loss. These two features allow the
writing of the following | et function (I have omitted argument checking code here and in later code for the
sake of brevity):

subfn let {

usage: let cnd var. ..

(let_cnd let_vars) := $*

if {~ $#let_cmd 0} {
echo 'usage: let {cnd} var...’ >[1=2]
rai se usage

}

let_prefix :=""

for let_i in $let_vars {

let_prefix = $let_prefix »
${quote $let_i}~ :=""${quote $$let_i}";’

resul t=${parse ' {' "$let_prefix"$let_cmd $*}'}
}

Let takes a block of code, and the names of environment variables to bind onto it; it returns the resulting
new block of code. For example:

fnrunit {x := hello, world; $*}
Xx:=a'bcd 'e
runit ${let {echo $x} x}
will print:
abcde

Looking at the code it produces is perhaps more enlightening than examining the function definition:

x=a'b cd ’'e
echo ${let {echo $x} x}

produces
{x:=a 'b c d e;{echo $x} $*}

Let has bundled up the values of the two bound variables, stuck them onto the beginning of the code block
and surrounded the whole thing in braces. It makes sure that it has valid syntax by using ${ par se}, and it
ensures that the correct arguments are passed to the script by passing it $*.

Note that all the variable names used inside the body of | et are prefixed with | et _. This is to try to
reduce the likelihood that someone will want to lexically bind to a variable of a name used inside | et .

- 17 -

The module interface

It is not within the scope of this paper to discuss in detail the public module interface to the shell, but
it is probably worth mentioning some of the other benefits that sk derives from living within Inferno.

Unlike shells in conventional systems, where the shell is a standalone program, accessible only
through exec(), in Inferno, sh presents a module interface that allows programs to gain lower level access
to the primitives provided by the shell. For example, Inferno programs can make use of the shell syntax
parsing directly, so a shell command in a configuration script might be checked for correctness before run-
ning it, or parsed to avoid parsing overhead when running a shell command within a loop.

More importantly, as long as it implements a superset of the Shel | bui | ti n interface, an application
can load itself into the shell as a module, and define builtin commands that directly access functionality that
it can provide.

This can, with minimum effort, provide an application with a programmable interface to its primi-
tives. I have modified the Inferno window manager wm for example, so that instead of using a custom,
fairly limited format file, its configuration file is just a shell script. Wnloads itself into the shell, defines a
new builtin command menu to create items in its main menu, and runs a shell script. The shell script has the
freedom to customise menu entries dynamically, to run arbitrary programs, and even to publicise this inter-
face to wmby creating a file with fi | e2chan and interpreting writes to the file as calls to the menu com-
mand:

file2chan /chan/wmenu {} {nmenu ${unquote ${rget data}}}
A corresponding wnmenu shell function might be written to provide access to the functionality:

fn wrmenu {
echo ${quote $*} > /chan/wmenu

}

Inferno has blurred the boundaries between application and library and sh exploits this - the possibilities
have only just begun to be explored.

Discussion

Although it is a newly written shell, the use of tried and tested semantics means that most of the normal
shell functionality works quite smoothly. The separation between normal commands and substitution buil-
tins is arguable, but I think justifiable. The distinction between the two classes of command means that
there is less awkwardness in the transition between ordinary commands and internally implemented com-
mands: both return the same kind of thing. A normal command’s return value remains essentially a simple
true/false status, whereas the new substitution builtins are returning a list with no real distinction between
true and false.

I believe that the decision to keep as much functionality as possible out of the core shell has paid off.
Allowing command blocks as values enables external modules to define new control- flowprimitives, which
in turn means that the core shell can be kept reasonably static, while the design of the shell modules evolves
independently. There is a syntactic price to pay for this generality, but I think it is worth it!

There are some aspects to the design that I do not find entirely satisfactory. It is strange, given the throw-
away and non- explicituse of subprocesses in the shell, that exceptions do not propagate between processes.
The model is Limbo’s, but I am not sure it works perfectly for sh. I feel there should probably be some dif-
ference between:

raise error > /dev/null
and

status error > /dev/null

The shared nature of loaded modules can cause problems; unlike environment variables, which are copied
for asynchronously running processes, the module instances for an asynchronously running process remain
the same. This means that a module such as t k must maintain mutual exclusion locks to protect access to its
data structures. This could be solved if Limbo had some kind of polymorphic type that enabled the shell to
hold some data on a module’s behalf - it could ask the module to copy it when necessary.

One thing that is lost going from Limbo to sh when using the t k module is the usual reference- countedgar-
bage collection of windows. Because a shell- scriptholds not a direct handle on the window, but only a

- 18-

string that indirectly refers to a handle held inside the t k module, there is no way for the system to know
when the window is no longer referred to, so, as long as a t k module is loaded, its windows must be explic-
itly deleted.

The names defined by loaded modules will become an issue if loaded modules proliferate. It is not easy to
ensure that a command that you are executing is defined by the module you think it is, given name clashes
between modules.I have been considering some kind of scheme that would allow discrimination between
modules, but for the moment, the point is moot - there are no module name clashes, and I hope that that
will remain the case.

Credits

Sh is almost entirely an amalgam of other people’s ideas that I have been fortunate enough to encounter
over the years. I hope they will forgive me for the corruption I've applied...

I have been a happy user of a version of Tom Duff’s rc for ten years or so; without rc, this shell would not
exist in anything like its present form. Thanks, Tom.

It was Byron Rakitzis’s UNIX version of rc that I was using for most of those ten years; it was his version of
the grammar that eventually became sh’s grammar, and the name of my gl orm() function came straight
from his rc source.

From Paul Haahr’s es, a descendent of Byron’s rc, and the shell that probably holds the most in common
with sh, I stole the “blocks as values” idea; the way that blocks transform into strings and vice versa is com-
pletely es’s. The syntax of the i f command also comes directly from es.

From Bruce Ellis’s mash, the other programmable shell for Inferno, I took the | oad command, the "{} syn-
tax and the <> redirection operator.

Last, but by no means least, S. R. Bourne, the author of the original sh, the granddaddy of this sk, is indi-
rectly responsible for all these shells. That so much has remained unchanged from then is a testament to the
power of his original vision.

