
Installing the Inferno Software

Vita Nuova
support@vitanuova.com

12 June 2003

Inferno can run as either a native operating system, in the usual way, or as a hosted virtual operating sys­
tem, running as an application on another operating system. This paper explains how to install Inferno
from the distribution media to a hosted environment and how to configure the system for basic networking.

Inferno can run as a hosted virtual operating system on top of Plan 9, Unix or Windows. In this paper, the
term Unix is used to cover all supported variants, currently FreeBSD, Linux, HP/UX, Irix and Solaris, and
the term Windows covers Microsoft Windows (98, Me, Nt, 2000, and XP). (Windows 98 might first require
installation of the Unicode layer update from Microsoft.)

1. Preparation

You should ensure at least 150 Mbytes of free space on the filesystem. The installation program will copy
files from the distribution CD to a directory on the filesystem called the inferno_root directory. You can
choose the location of this directory. If you are installing to a multiuser filesystem outside your control a
subdirectory of your home directory might be most sensible. If you plan to share the Inferno system with
other users then common choices for inferno_root are /usr/inferno on Unix and Plan 9 systems, and
c:\inferno on Windows systems. Where these appear in examples in this paper you should substitute
your own inferno_root directory.

" Step 1a: Choose the inferno_root directory.

Ensure that the user who will run the installation program has appropriate filesystem permissions to create
the inferno_root directory and files and subdirectories beneath it.

2. Copying Files

On all platforms the files will be owned by the user doing the installation, except for installation onto a FAT
file system (eg, on Windows), where the files appear to be owned by Everyone because FAT does not
record ownership.

" Step 2a: Insert the distribution CD into the CD drive.

On Unix and Plan 9, mount the CD to a suitable location on the filesystem, call this location cd_path . On
Windows, note the drive letter of the CD, call this drive letter cd_drive . The files will be copied by an
Inferno hosted installation program which runs directly from the CD. The directory /install on the CD
contains an installation program for each supported platform � a shell script for Unix and Plan 9 and an exe­
cutable for Windows. The Plan 9 install script is called Plan9.rc and determines the CPU type from the
environment variable cputype . The Unix install scripts all have names of the form host_os- host_arch.sh
where host_os will be one of: FreeBSD , Linux , or Solaris and host_arch will be one of: 386 , mips , power
or sparc . Most platforms offer just the one obvious combination. The Windows installation program is
called setup.exe ; it is used on all varieties of Windows. The next step describes how to begin the installa­
tion by running the program that corresponds to your host system.

" Step 2b: Run the installation script.

The installation program will copy files from the CD to the filesystem. The Windows installation program
will also create registry entries and add an Inferno item to the Windows start menu. On Plan 9, run

rc cd_path/install/Plan9.rc inferno_root

­ 2 ­

Where inferno_root is the path to the chosen Inferno root directory. The CPU architecture will be inferred
from the environment variable cputype . On Unix, run

sh cd_path/install/ host­os- host_arch.sh inferno_root

Where host_os is the Unix variant name (FreeBSD , Irix , Linux or Solaris). host_arch is the CPU type
(eg, 386), and inferno_root is the path to the chosen Inferno directory. On Windows, run

cd_drive:\install\setup.exe

The Windows installation program will ask you to choose the location of the installation directory on the
hard disk.

On all platforms, a copy of Inferno on the CD will install from various installation packages on the CD to
the inferno_root subtree on the filesystem. On any platform it installs support for all.

Inferno is now installed, but it needs to be configured for your site. The process acts as a quick tour of parts
of the system. The main tasks are to add local parameters to the network data base, and to set up the
authentication system. If you are going to run Inferno standalone, for instance to experiment with Limbo
and the file serving interface, most of what follows can be deferred indefinitely. It is still worthwhile skim­
ming through it, because the first few sections tell how to start up Inferno with correct parameters (eg, root
directory and graphics resolution). (A configuration program that runs under the window system would be
more convenient, and fairly easy to do, but that has not yet been done.)

3. Running Inferno

Inferno host executables are all kept in a single directory corresponding to the combination of host operat­
ing system and CPU architecture � the Inferno bin directory.

inferno_root/ host_os/ host_arch/bin

(On Windows the path might need \ not / of course.) That directory can be added to the search path of the
host system’s command interpreter, and that process will be described first, although as discussed later one
can use a script instead and that is sometimes more convenient. (Of course, the script will still need to refer
to that directory.)

Plan 9: Plan 9 users should add a line to their lib/profile file that binds this directory after their /bin
directory.

bind -a /usr/inferno/Plan9/$cputype/bin /bin

The bind is done after the existing bin directory to avoid hiding the existing Plan 9 compilers. If, at a later
stage, you build either the hosted or native Inferno kernels for ARM or StrongARM you should ensure that
the Inferno compilers are used rather than the Plan 9 compilers, since they differ in the implementation of
floating­point instructions (the Plan 9 ARM suite uses a byte order that is more plausible than the order
ARM dictates but therefore wrong). That difference is likely to be resolved at some point but it has not yet
been done.

Windows: The host_os is always Nt (even for Windows 98, 2000 or XP) and host_arch is always 386 and the
installation program will create an entry on the start menu to invoke Inferno. For Unix systems or Windows
systems in which Inferno will be started from a command shell, the environment variable PATHshould be
set to include the Inferno bin directory. For Windows 95 and Windows 98 this should be done in the
\autoexec.bat file by adding a line like

PATH=c:\inferno\Nt\386\bin;%PATH%

You will need to reboot Windows to have the system reread the \autoexec.bat file. For Windows NT
and Windows 2000 modify the Path environment variable through Control Panel ­> System ­> Environment .

If you are using an MKS or Cygwin Unix­like shell environment, you might instead set:

PATH="c:/inferno/Nt/386/bin;$PATH"

and export it if necessary.

Unix: For Unix systems, for sh derivatives, the environment variable PATHshould be set to include the
Inferno bin directory. This might be done in your .profile file by adding a line like

PATH="/usr/inferno/Linux/386/bin:$PATH"

­ 3 ­

Don’t forget to ensure that PATHis exported. You may need to log out and back in again for the changes to
take effect.

" Step 3a: Start Inferno.

Hosted inferno is run by invoking an executable called emu .

On Windows, select the Inferno option from the start menu . This will invoke emu with appropriate argu­
ments to find its files in inferno_root . If you need to change any of the options passed to emu when invoked
from the start menu you need to do this by clicking the right mouse button on the Windows task bar and
choosing Properties ­> Start Menu Programs ­> Advanced to modify the shortcut used for Inferno. For Unix
and Plan 9, you will need to tell emu where to find the Inferno file tree by passing it the -r rootpath com­
mand line option. For example

emu -r/usr/john/inferno

Without the -r option it will look for the file tree in /usr/inferno on Plan 9 and Unix and, when invoked
from the command line on WIndows, the default is \inferno on the current drive. (The Windows start
menu by contrast has already been set to use the right directory by the installation software.)

When using graphics, emu will use a window with a resolution of 640 x 480 pixels by default. To use a
larger resolution you will need to pass emu an option -g XsizexYsize on the command line. So, for example,
to invoke emu as above but with a resolution of 1024 x 768 pixels the full command line would be

emu -r/usr/john/inferno -g1024x768

When invoked in this way emu displays a command window running the Inferno shell /dis/sh.dis . To
avoid typing the command line options each time you invoke emu you can store them in the environment
variable EMUwhich is interrogated when emu is started and might as well be set along side the PATHenvi­
ronment variable if the same configuration options are to be used on each invocation.

set EMU="-rd:\Documents and Settings\john\inferno -g1024x768"

for Windows.

EMU=(-r/usr/john/inferno -g1024x768)

for Plan 9, and

EMU="-r/usr/john/inferno -g1024x768"

for Unix. An alternative to using the EMUenvironment variable is to place the correct invocation in a script
file (or batch file, for Windows) and invoke that instead of running emu directly. It is important to note that
for Windows the -r option also serves to indicate both the drive and directory on to which the software has
been installed. Without a drive letter the system will assume the current drive and will fail if the user
changes to an alternative drive. Once the environment variables or scripts are set up, as described above,
invoking plain

emu

or the appropriate script file, should result in it starting up Inferno’s command interpreter sh(1), which
prompts with a semicolon:

;

You can add a further option -c1 to start up emu in a mode in which the system compiles a module’s Dis
operations to native machine instructions when a module is loaded. (See the emu(1) manual page.) In com­
pile mode programs that do significant computation will run much faster. Whether in compiled or inter­
preted mode you should now have a functional hosted Inferno system. When Inferno starts the initial
/dis/sh.dis it reads commands from the file /lib/sh/profile before becoming interactive. See the
manual pages for the shell sh(1) to learn more about tailoring the initial environment.

The semicolon is the default shell prompt. From this command window you should be able to see the
installed Inferno files and directories

lc /

The command lc presents the contents of its directory argument in columnar fashion to standard output in
the command window.

­ 4 ­

; lc /
FreeBSD/ Unixware/ icons/ libkern/ man/ prof/
Hp/ acme/ include/ libkeyring/ mkconfig prog/
Inferno/ appl/ keydb/ libmath/ mkfile services/
Irix/ asm/ legal/ libmemdraw/ mkfiles/ tmp/
LICENCE chan/ lib/ libmemlayer/ mnt/ tools/
Linux/ dev/ lib9/ libtk/ module/ usr/
MacOSX/ dis/ libbio/ licencedb/ n/ utils/
NOTICE doc/ libcrypt/ limbo/ net/ wrap/
Nt/ emu/ libdraw/ locale/ nvfs/
Plan9/ env/ libfreetype/ mail/ o/
Solaris/ fonts/ libinterp/ makemk.sh os/
;

Only the files and directories in and below the inferno_root directory on the host filesystem are immediately
visible to an Inferno process; these files are made visible in the root of the Inferno file namespace. If you
wish to import or export files from and to the host filesystem you will need to use tools on your host to
move them in or out of the Inferno visible portion of your host filesystem (see the manual pages os(1) and
cmd(3) for an interface to host commands). (We plan to make such access direct, but the details are still
being worked out.) From this point onwards in this paper all file paths not qualified with inferno_root are
assumed to be in the Inferno namespace. Files created in the host filesystem will be created with the user id
of the user that started emu and on Unix systems with that user’s group id.

4. Setting the site’s time zone

Time zone settings are defined by files in the directory /locale . The setting affects only how the time is
displayed; the internal representation does not vary. For instance, the file /locale/GMT defines Green­
wich Mean Time, /locale/GB-Eire defines time zones for Great Britain and the Irish Republic (GMT and
British Summer Time), and /locale/US_Eastern defines United States Eastern Standard Time and East­
ern Daylight Time. The time zone settings used by applications are read (by daytime(2)) from the file
/locale/timezone , which is initially a copy of /locale/GB-Eire . If displaying time as the time in
London is adequate, you need change nothing. To set a different time zone for the whole site, copy the
appropriate time zone file into /locale/timezone :

cp /locale/US_Eastern /locale/timezone

To set a different time zone for a user or window, bind(1) the file containing the time zone setting over
/locale/timezone , either in the user’s profile or in a name space description file:

bind /locale/US_Eastern /locale/timezone

5. Running the Window Manager wm

Graphical Inferno programs normally run under the window manager wm(1). Inferno has a simple editor,
wm/edit , that can be used to edit the inferno configuration files. The ‘power environment’ for editing and
program development is acme(1), but rather that throwing you in at the deep end, we shall stick to the sim­
pler one for now. If you already know Acme from Plan 9, however, or perhaps Wily from Unix, feel free to
use Inferno’s acme instead of edit .

" Step 5a: Start the window manager.

Invoke wm by typing

wm/wm

You should see a new window open with a blue­grey background and a small Vita Nuova logo in the bot­
tom left hand corner. Click on the logo with mouse button 1 to reveal a small menu. Selecting the Edit entry
will start wm/edit . In common with most wm programs the editor has three small buttons in a line at its top
right hand corner. Clicking on the X button, the rightmost button, will close the program down. The left­
most of the three buttons will allow the window to be resized � after clicking it drag the window from a
point near to either one of its edges or one of its corners. The middle button will minimise the window, cre­
ating an entry for it in the application bar along the bottom of the main wm window. You can restore a min­
imised window by clicking on its entry in the application bar. The initial wm configuration is determined
by the contents of the shell script /lib/wmsetup (see toolbar(1) and sh(1)).

­ 5 ­

" Step 5b: Open a shell window.

Choose the shell option from the menu to open up a shell window. The configuration of Inferno will be
done from this shell window.

6. Manual Pages

Manual pages for all of the system commands are available from a shell window. Use the man or wm/man
commands. For example,

man wm

will give information about wm . And

man man

will give information about using man . Wm/man makes use of the Tk text widget to produce slightly more
attractive output than the plain command man . Here, and in other Inferno documentation you will see ref­
erences to manual page entries of the form command(section) . You can display the manual page for the
command by running

man command

or

man section command

if the manual page appears in more than one section.

7. Initial Namespace

The initial Inferno namespace is built by placing the root device ’#/’ (see root(3)) at the root of the names­
pace and binding

i) the host filesystem device ’#U’ (see fs(3)) containing the inferno_root subtree of the host filesystem at
the root of the Inferno filesystem,

ii) the console device ’#c’ (see cons(3)) in /dev ,

iii) the prog device ’#p’ (see prog(3)) onto /prog ,

iv) the IP device ’#I’ (see ip(3)) in /net , and

v) the environment device ’#e’ (see env(3)) at /dev/env .

You can see the sequence of commands required to construct the current namespace by running

ns

8. Inferno’s network

If you are just going to use Inferno for local Limbo programming, and not use its networking interface, you
can skip to the section ‘‘Adding new users’’ at the end of this document. You can always come back to this
step later.

To use IP networking, the IP device ip(3)) must have been bound into /net . Typing

ls -l /net

(see ls(1)) should result in something like

--rw-rw-r-- I 0 network john 0 May 31 07:11 /net/arp
--rw-rw-r-- I 0 network john 0 May 31 07:11 /net/ndb
d-r-xr-xr-x I 0 network john 0 May 31 07:11 /net/tcp
d-r-xr-xr-x I 0 network john 0 May 31 07:11 /net/udp

There might be many more names on some systems.

A system running Inferno, whether native or hosted, can by agreement attach to any or all resources that
are in the name space of another Inferno system (or even its own). That requires:

" the importing system must know where to find them

" the exporting system must agree to export them

­ 6 ­

" the two systems must authenticate the access (not all resources will be permitted to all systems or
users)

" the conversation can be encrypted to keep it safe from prying eyes and interference

On an Inferno network, there is usually one secure machine that acts as authentication server. All other sys­
tems variously play the rôles of server and client as required: any system can import some resources (or
none) and export others (or none), simultaneously, and differently in different name spaces. In following
sections, we shall write as though there were three distinct machines: authentication server (signer); server
(exporting resources); and client (importing resources). With Inferno, you can achieve a similar effect on a
single machine by starting up distinct instances of emu instead. That is the easiest way to become familiar
with the process (and also avoids having to install the system on several machines to start). It is still worth­
while setting up a secured authentication server later, especially if you are using Windows on a FAT file
system where the host system’s file protections are limited.

We shall now configure Inferno to allow each of the functions listed above:

" change the network database to tell where to find local network resources

" set up the authentication system, specifically the authentication server or ‘signer’

" start network services (two distinct sets: one for the authentication services and the other for all other
network services)

9. Network database files

In both hosted and native modes, Inferno uses a collection of text files of a particular form to store all details
of network and service configuration. When running hosted, Inferno typically gets most of its data from the
host operating system, and the database contains mainly Inferno­specific data.

The file /lib/ndb/local is the root of the collection of network database files. The format is defined by
ndb(6), but essentially it is a collection of groups of attribute/value pairs of the form attribute=value.
Attribute names and most values are case­sensitive.

Related attribute/value pairs are grouped into database ‘entries’. An entry can span one or more lines: the
first line starts with a non­blank character, and any subsequent lines in that entry start with white space
(blank or tab).

9.1. Site parameters

The version of /lib/ndb/local at time of writing looks like this:

database=
file=/lib/ndb/local
file=/lib/ndb/dns
file=/lib/ndb/inferno
file=/lib/ndb/common

infernosite=
#dnsdomain=your.domain.com
#dns=1.2.3.4 # resolver
SIGNER=your_Inferno_signer_here
FILESERVER=your_Inferno_fileserver_here
smtp=your_smtpserver_here
pop3=your_pop3server_here
registry=your_registry_server

The individual files forming the data base are listed in order in the database entry. They can be ignored
for the moment. The entry labelled infernosite= defines a mapping from symbolic host names of the
form $service to a host name, domain name, or a numeric Internet address. For instance, an application that
needs an authentication service will refer to $SIGNER and an Inferno naming service will translate that at
run­time to the appropriate network name for that environment. Consequently, the entries above need to
be customised for a given site. (The items that are commented out are not needed when the host’s own
DNS resolver is used instead of Inferno’s own dns(8).) For example, our infernosite entry in the local
file might look something like this

­ 7 ­

infernosite=
dnsdomain=vitanuova.com
dns=200.1.1.11 # resolver
SIGNER=doppio
FILESERVER=doppio
smtp=doppio
pop3=doppio
registry=doppio

where doppio is the host name of a machine that is offering the given services to Inferno, and 200.1.1.11
is the Internet address of a local DNS resolver.

" Step 9a: Enter defaults for your site

The only important names initially are:

SIGNER the host or domain name, or address of the machine that will act as signer

registry the name or address of a machine that provides the local dynamic service registry(4)

FILESERVER the primary file server (actually needed only by clients with no storage of their own)

All others are used by specific applications such as acme(1) mail or ftpfs(4).

If you are using a single machine for signer and server/client, put its name in those three entries.

9.2. Connection server cs(8) and name translation

The connection server cs(8) uses the network database and other data (such as that provided by the host
system and the Internet DNS servers) to translate symbolic network names and services into instructions for
connecting to a given service. In hosted mode, network and service names are passed through to the host
for conversion to numeric IP addresses and port numbers. If the host is unable to convert a service name the
connection server will attempt to convert the name using mappings of service and protocol names to Inter­
net port numbers in the file /lib/ndb/inferno :

tcp=infgamelogin port=6660 # inferno games login service
tcp=styx port=6666 # main file service
tcp=mpeg port=6667 # mpeg stream
tcp=rstyx port=6668 # remote invocation
tcp=infdb port=6669 # database server
tcp=infweb port=6670 # inferno web server
tcp=infsigner port=6671 # inferno signing services
tcp=infcsigner port=6672 # inferno countersigner
tcp=inflogin port=6673 # inferno credential service
tcp=infsds port=6674 # software download
tcp=registry port=6675 # registry(4)
udp=virgil port=2202 # naming service

For the moment, leave that file as it is. You will only need to modify this file if in future you add new
statically­configured services to Inferno. (Services that come and go dynamically might use registry(4)
instead, a registry manager that allows a service to be found using a description of it.)

10. Configuring a Signer

Before an Inferno machine can authenticate establish a secure connection to an Inferno service on another
machine, each system needs to obtain a certificate from a common signer. We talk here as though there is
only one ‘signer’ per site but in fact there can be application­ or group­specific ones. For instance, a version
of the Inferno games server automatically starts its own signing service to keep the identities and keys used
for game service separate from those of the primary system, allowing users to set up their own gaming
groups without fuss. To use authenticated connections for the primary file services we need to set up a
signer to generate certificates for users (see createsignerkey(8) and logind(8)).

Choose an Inferno machine to become the signer. If this is the first or only Inferno machine on your net­
work then make this machine the signer. (It is more realistic if you start up a separate copy of emu and

 The authentication system will shortly expand to a rôle­based one allowing a chain of certificates to be used, from several signers, with

delegation etc.

­ 8 ­

leave it in ‘console’ mode without starting the window system.) You can always move the function else­
where later.

" Step 10a: Empty the secret file of secrets.

The authentication server verifies a user’s identity by checking that the user knows a shared secret. (In fact
the secret is not used directly, but instead a scrambled value that was derived from it.) The file
/keydb/keys holds those secrets; it is encrypted using a secret password or phrase known only to the
manager of the authentication server. Having just installed Inferno, the file should exist and be readable
only by you (or the user as which the authentication service will run). On the signer machine, type

ls -l /keydb/keys

You should see something like:

--rw------- M 7772 yourname inf 0 Jun 12 03:08 /keydb/keys

You should see something like the above. If the file does not exist or is not empty or has the wrong mode,
use:

cp /dev/null /keydb/keys; chmod 600 /keydb/keys

to set it right.

" Step 10b: Generate a signer key.

Next on the signer machine, run

auth/createsignerkey name

In place of name enter the network name of the signer. A fully­qualified domain name of a host or individ­
ual is fine. This value will appear as the signer name in each certificate generated by the signer. Createsign­
erkey creates public and private keys that are used by the signer when generating certificates. They are
stored in /keydb/signerkey ; check that it has permissions that limit access to the user that will run the
authentication services:

; ls -l /keydb/signerkey
--rw------- M 32685 secrets inf 1010 Jul 07 2000 /keydb/signerkey

Use chmod(1) to set the mode to read/write only for the owner if necessary:

chmod 600 /keydb/signerkey

" Step 10c: Start the authentication network services

Still at the signer console, type

svc/auth

That script (see svc(8)) will check that the /keydb/keys and /keydb/signerkey files exist, and then start
the program keyfs(4), which manages the keys file. It will prompt for the password (pass phrase) you wish
to use to protect the keys file, now and on subsequent runs:

; svc/auth
Key:
Confirm key:

It prompts twice to confirm it. If successfully confirmed, it will then start the network services used by
Inferno to authenticate local and remote users and hosts. (If confirmation fails, retry by running svc/auth
again.)

You can check that they are running by typing:

ps

which should show something like the following:

­ 9 ­

1 1 john release 74K Sh[$Sys]
3 2 john alt 15K Cs

10 9 john recv 25K Keyfs
11 9 john release 44K Styx[$Sys]
12 9 john recv 25K Keyfs
14 1 john alt 8K Listen
16 1 john release 8K Listen[$Sys]
18 1 john alt 9K Listen
20 1 john release 9K Listen[$Sys]
22 1 john alt 9K Listen
24 1 john release 9K Listen[$Sys]
26 1 john alt 8K Listen
28 1 john release 8K Listen[$Sys]
29 1 john ready 73K Ps[$Sys]

There should be Keyfs and Listen processes.

" Step 10d: Enter user names and secrets.

For each user to be authenticated by the signer run

auth/changelogin username

You will be prompted to supply a secret (ie, password or pass phrase) and expiration date. The expiration
date will be used as the maximum expiration date of authentication certificates granted to that user.
Changelogin (see changelogin(8)) accesses the name space generated by keyfs(4), which has just been started
above by svc/auth . A user can later change the stored secret using the passwd(1) command. For the
signer to generate a certificate there must be at least one entry in the password file. If you are not sure at
this stage of the names of the users that you want to authenticate then create an entry for the user inferno
and yourself.

11. Establishing a Secure Connection

To establish a secure connection between two Inferno machines, each needs to present a public key with a
certificate signed by a common signer. We shall make two public/private key sets, one for the server and
one for a client (they differ only in where they are stored). We shall do the server first, because the usual
network services require the server possess some keys before they can start. We shall then start those ser­
vices, and finally sort out the client.

" Step 11a: Start the connection service.

The server still needs to make contact with the signer, so we need to start the basic connection service cs(8).
If you are using the same instance of emu in which you invoked svc/auth above, you should skip this
step. To check, you should see a new file in the /net directory called cs . Run the command

ls /net

You should see at least the following names in the output:

/net/cs
/net/ndb
/net/tcp
/net/udp

Otherwise, type

ndb/cs

That starts cs(8). Try the ls /net again to check that the cs file has appeared.

" Step 11b: Generate a server key set.

On the server machine (or in the ‘server’ window), use getauthinfo(8) to obtain a certificate and save it in a
file named default by running

getauthinfo default

Getauthinfo will prompt for the address of your signer (you can often just use its host name or even
localhost) and for a remote username and password combination. Getauthinfo will connect to the inflogin

­ 10 ­

service on the signer and authenticate you against its user and password database, /keydb/keys , using the
username and password that you entered above. Answer yes to the question that asks if you want to save
the certificate in a file. Getauthinfo will save a certificate in the file /usr/ user/keyring/default where
user is the name in /dev/user .

12. Network Services

As mentioned above, in a full Inferno network the authentication services will usually be run on a secured
machine of their own (the signer), and the ordinary network services such as file service are not run on a
signer. If you are, however, using one machine for all functions, you can get the right effect by starting
another instance of emu , to act as an Inferno host that is not a signer. This one will run the services of a pri­
mary file server and the site registry(4).

Commands described in svc(8) start listeners for various local network services. (The commands are actu­
ally shell scripts.) As we saw above, svc/auth starts the services on a signer.

Here we shall start the usual set of services.

" Step 12a: Start the network listener services.

Type

svc/net

Various network services will (should!) now be running. To confirm this type

ps

which should show something like the following:

; ps
1 1 inferno release 74K Sh[$Sys]
7 6 inferno alt 15K Cs

13 1 inferno recv 15K Registry
14 1 inferno release 44K Styx[$Sys]
15 1 inferno recv 15K Registry
17 1 inferno alt 8K Listen
19 1 inferno release 8K Listen[$Sys]
22 1 inferno alt 8K Listen
24 1 inferno release 8K Listen[$Sys]
25 1 inferno ready 74K Ps[$Sys]

There should be a few Listen processes and perhaps a Registry .

You can also try

netstat

Netstat prints information about network connections. You should see several lines of output, each one
describing an announced TCP or UDP service. Depending upon the contents of the network configuration
files we included on the CD, you might see output something like this:

tcp/1 Announced inferno 200.1.1.89!6668 ::!0
tcp/2 Announced inferno 200.1.1.89!6666 ::!0
tcp/3 Announced inferno 200.1.1.89!6675 ::!0

Each line corresponds to a network connection: the connection name, the name of the user running the
server, the address of the local end of the connection, the address of the remote end of the connection, and
the connection status. The connection name is actually the protocol and conversation directory in /net .
The connection addresses are all of the form host! port for these IP based services, and the remote addresses
are not filled in because they all represent listening services that are in the Announced state. In this exam­
ple the third line shows a TCP service listening on port 6675. Examining /lib/ndb/inferno with grep
(see grep(1)) shows that the listener on port 6675 is the Inferno registry service

grep 6675 /lib/ndb/inferno

gives

tcp=registry port=6675 # default registry

­ 11 ­

Now the server is ready but we need a client.

Either use a third machine or (more likely at first) simply start another emu instance in a new window. Start
its connection server, again by typing

ndb/cs

The connection server is fundamental to the Inferno network. Once networking is set up, when subse­
quently starting up a client you should start cs before starting the window system. Note that if you are run­
ning the Inferno instance as a server, or combined server and client, the svc/net that starts the network
services automatically starts cs , and you need not do so explicitly.

" Step 12b: Generate a client certificate.

Obtain a certificate for the client in the same way as on the server. We shall obtain a certificate for use with
a specific server by storing it in a file whose name exactly matches the network address of the server

getauthinfo tcp! hostname

Use the current machine’s hostname . Getauthinfo stores the certificate in the file
/usr/ user/keyring/ keyname where user is the name in /dev/user and keyname is the argument given to
getauthinfo . Again, answer yes to the question that asks if you want to save the certificate in a file.

Now that both client and server have a certificate obtained from the same signer it is possible to establish a
secure connection between them. Note that getting keys and certificates with getauthinfo is normally done
just once (or at most once per server when the default key is not used). In short, all the work done up to
now need not be repeated. After this, provided the keys were saved to a keyring file, as many authenti­
cated connections can be made as desired until the certificate expires (which by default is whenever the
password entry was set to expire). Also note that the certificates for different machines can have different
signers, and one can even use different certificates for the same machine when the remote user name is to
differ (the -f option of getauthinfo can then be useful to force an appropriate keyring name).

" Step 12c: Make an authenticated connection.

The script svc/net on the server started fundamental name services and also a Styx file service. That can
also be started separately using svc/styx . In either case the namespace that is served is the one in which
the command was invoked. Now you can test the service.

Confirm that /n/remote is an empty directory by typing

lc /n/remote

You can now mount the server’s name space onto the client’s directory /n/remote by typing

mount serveraddr /n/remote

Where serveraddr is the IP address of the server or a name that the host can resolve to the IP address of the
server. Now

lc /n/remote

should reveal the files and directories in the namespace being served by the server. Those files are now also
visible in the namespace of your shell. You will notice that these changes only affect the shell in which you
ran the mount command � other windows are unaffected. You can create, remove or modify files and direc­
tories in and under /n/remote much as you can any other file or directory in your namespace. In fact, in
general, a process does not need to know whether a file actually resides locally or remotely. You can
unmount the mounted directory with unmount . Type

unmount /n/remote

You can confirm that it has gone by running

ls /n/remote

All connections made by Inferno are authenticated. The default connection made by mount is authenticated
but uses neither encryption nor secure digests. You can pass an argument to mount to specify a more secure
connection: its -C option gives it a hashing and an encryption algorithm to be applied to the connection.

­ 12 ­

" Step 12d: Make a secure authenticated connection.

For example,

mount -C sha1/rc4_256 serveraddr /n/remote

makes an authenticated connection to the machine given by serveraddr , then engages SHA1 hashing for mes­
sage digesting and 256­bit RC4 for encryption.

It mounts the namespace served by serveraddr’s Styx service on the local Inferno directory /n/remote .

13. Adding new users

Every inferno process has an associated user name . At boot time the user name is set equal to your login
name on the host operating system. The user name is used by wm/logon to select the home directory, and by
other programs like mount when it searches for certificates. (It can also control permission for file access on
the local system in native Inferno and some hosted Inferno configurations.) When you attach to a server on
another system the user name in the authenticating certificate can be used by the remote file service to set
the user name appropriately there.

To create a new user, copy the directory /usr/inferno into /usr/ username. If the user is to have access
to services on the network, make an authentication server entry using changelogin(8). The user can change
the stored secret using passwd(1), if desired. Having logged in for the first time, the user should generate a
default public/private key set using getauthinfo(8). (The authentication services must be running some­
where.)

The wm window manager program wm/logon allows a user to login to the local Inferno system as an Inferno
user (different from the host user name). Its use is shown next.

" Step 13a: Re­start Inferno.

You should now close down any instances of emu that you are currently running. The quickest way to do
this is to type control­c in the emu window in which you ran wm/wm . Start a new emu , as before, by either
running

emu

or by choosing the appropriate entry from your start menu on Windows machines. This time, start network
services

svc/net

and then run

wm/wm wm/logon

and log in as user inferno . When you log in, wm/logon will change directory to /usr/inferno and then
write the name inferno to /dev/user . If the file /usr/inferno/namespace exists it will be used to
construct a new namespace for the user based on the commands that it contains (see newns(2)).

14. What next

You should now have a fully functional Inferno system. You will need to have a three button mouse to use
acme , wm , or plumbing.

To learn more you could start with the manual pages for: intro(1), emu(1), wm(1), wm­misc(1), sh(1), acme(1),
and limbo(1) and also the papers in sections 1, 2 and 3 of Volume 2 of The Inferno Programmer’s Manual .

 The details are system­dependent and currently subject to change.

