
Mafs − Plan 9 userspace file systems

Mafs wants you to be able to understand it, so you can be self-sufficient and fix a crash
at two in the morning or satisfy your need for speed or a feature. This empowerment is
priceless for those with skin in the game.

Mafs is a user space file systems to provide system stability and security. It is based on
kfs.

As this document aims to also provide working knowledge, it gratuitously uses the
actual commands and the relevant C data structure definitions to convey information.

Mafs Workflow

Chan.aux has
file offset, etc.

Client

multiple

workers

9p
Abstractions

Directory
File

Data Structures

Dentry

Buffer cache
used blocks

Extents
free blocks

In-memory
block contents

Disk
blocks

Disk Contents

Mafs organizes and saves content on a disk as directories and files, just like any other
filesystem.

The unit of storage is a logical block (not physical sector) of data. Disk space is split into
blocks of 512 bytes. A directory entry uses 2 blocks (1KiB) and a data block could use
upto 2048 blocks (1MiB).

 2

A sample disk of 2048 bytes with 4 blocks.

disk of
2048 bytes

disk of
2048 bytes

Block

0

1

2

3

A block is stored to the disk with a tag in the first byte and the Qid.path in the last 8
bytes. The different types of blocks on a disk are:
enum
{

Tblank = 0,
Tfree = 0, /* free block */
Tnone = 0,
Tdata, /* actual file contents */
Tdentry, /* directory entry, size = Dentrysize */

/* Tdata & indirect blocks are last, to allow for greater depth */
Tind0, /* contains a list of Tdata block numbers for files

and Tdentry block numbers for directories.*/
Tind1, /* contains a list of Tind0 block numbers */
Tind2, /* contains a list of Tind1 block numbers */
Tind3, /* contains a list of Tind1 block numbers */
Tind4, /* contains a list of Tind1 block numbers */

/* gap for more indirect block depth in future.
It can be put upto Tind7 without needing any code changes */

Maxtind, /* should be Tind0+Niblock */
MAXTAG = Maxtind,

Tmaxind = Maxtind - 1,
};

Every file or directory is represented on the disk by a directory entry (Dentry). A direc
tory entry uses a unit sized block (tag = Tdentry) and is uniquely identifiable by a Qid.

A file�s contents are stored in the directory entry itself if they are 320 bytes or lesser. A
file stores its contents in blocks with a tag of Tdata if the file size is more than that. A
directory holds the directory entries of it�s children in blocks each with a tag of Tdentry.

The blocks used by a file or directory entry are listed in their directory entry. As it is not
possible to represent big files using the list of blocks available in the directory entry, the
blocks are structured to use multiple levels of indirection as the file size increases.

A file�s data blocks are identified by a tag of Tdata and that file�s Qid.path. A directory�s
data blocks are identified by a tag of Tdentry and Qid.path of the child directory entry.

 3

(Is this quirky? Should the child�s directory entry have a tag with the parent�s Qid.path?)

A block number of zero represents the end of the file�s contents. If a file is truncated,
the data and indirect blocks are given up and the dentry.dblocks[0] = 0.

Mafs does not store the last access time of a file or directory.

A directory entry is defined as:
enum { Blocksize = 512ULL, /* minimum data unit size */

Metadataunits = 2,
Metadatablocksize = Metadataunits*Blocksize, /* Keep the original and a copy together */

Maxdatablockunits = 2048,
Nindperblock= (Blocksize-3*sizeof(u64))/sizeof(u64),/* number of pointers per block */
Nu64perblock= (Blocksize/sizeof(u64)), /* number of u64�s in a block */
Dpathidx = (Blocksize/sizeof(u64) -1), /* index of path in the last data block, last u64 */

Namelen = 127, /* maximum length of a file name, calculated manually */
Ndblock = 32, /* number of direct blocks in a Dentry */
Niblock = 5, /* maximum depth of indirect blocks, can increase it to 8 without issues */

};
struct Dentryhdr
{

u8 tag;
u8 verd;
s16 uid;
s16 gid;
s16 muid; /* 8 */
u64 size; /* 0 for directories. For files, size in bytes of the content - 16 */
u64 pdblkno; /* block number of the parent directory entry. Will be 0 for root. - 24 */
u64 pqpath; /* parent path - 32 */
u64 mtime; /* modified time in nano seconds from epoch - 40 */
u64 qpath; /* unique identifier Qid.path 48 */
u32 version; /* Qid.version 52 */
u32 mode; /* same bits as defined in /sys/include/libc.h:/Dir.mode/ - 56 */
u8 namelen; /* store name as a counted string 57 */
s8 name[Namelen]; /* Namelen = 127 - 184*/

};
struct Datahdr
{

u8 tag;
u8 unused; /* for alignment and future use */
u16 len;
u64 dblkno; /* block number of the directory entry */

};

enum {
/* size of identifiers used in a Tdata block */
Ddataidssize = sizeof(Dentryhdr) -sizeof(u64 /* trailing path */),
/* max possible size of data that can be stuffed into a Dentry */
Ddatasize = Blocksize -Ddataidssize,
Maxdatablocksize = Maxdatablockunits*Blocksize -Ddataidssize,

};

 4

struct Dentry
{

Dentryhdr;
union
{

struct
{

u64 dblocks[Ndblock]; /* direct blocks. */
/* List of Tdata block numbers for files and

Tdentry block numbers for directories */
u64 iblocks[Niblock]; /* indirect blocks */

};
Super;

/* when size <= Dentrysize-184-sizeof(Tag), store the data here itself */
s8 buf[Ddatasize];

};
u64 path; /* same as qid.path */

};
struct Indirect
{

u8 tagi; /* the suffix i to avoid union complaining about ambiguous fields */
u8 veri;
u8 pad[6]; /* unused, to align to a multiple of 8 */
u64 dblkno; /* block number of the directory entry */
u64 bufa[Nindperblock];
u64 path; /* same as qid.path */

};
struct Metadataunit
{

union
{

Indirect;
Dentry;

};
};
struct Metadata
{

union
{

Indirect i[2];
Dentry d[2];

};
};
struct Data /* used to unmarshall the disk contents */
{

Datahdr;
u8 buf[1]; /* upto Maxdatablocksize, followed by u64 path */
/* u64 path; same as path at the end of the data content */

};

A directory entry once assigned is not given up until the parent directory is removed. It
is zero�ed if the directory entry is removed. It is reused by the next directory entry cre
ated under that parent directory. This removes the need for garbage collection of

 5

directory entries on removals and also avoids zero block numbers in the middle of a
directory entry�s list of blocks. A zero block number while traversing a directory entry�s
dblocks or iblocks represents the end of directory or file contents. When a directory is
removed, the parent will have a directory entry with a tag of Tdentry and Qpnone and
the rest of the contents set to zero.

A directory entry is stored in two blocks to have a copy on write. These entries are in
consecutive blocks.

A directory�s size is always zero.

; tests/6.sizes
Blocksize 512 Metadataunits 2 Maxdatablockunits 2048
Dentryhdr size 184 Ddatasize 320
Dentry size 512 Namelen 127
Datahdr size 12 Ddataidssize 20 Maxdatablocksize 1048556
Namelen 127 Ndblock 32 Niblock 5
Nindperblock 61 Maxdatablocksize 1048556
A Tind0 unit points to 1 data blocks (1048556 bytes)

block points to 61 data blocks
reli start 32 max 92
max size 93*Maxdatablocksize = 97515708 bytes = 92 MiB

A Tind1 unit points to 61 data blocks (63961916 bytes)
block points to 3721 data blocks
reli start 93 max 3813
max size 3814*Maxdatablocksize = 3999192584 bytes = 3 GiB

A Tind2 unit points to 3721 data blocks (3901676876 bytes)
block points to 226981 data blocks
reli start 3814 max 230794
max size 230795*Maxdatablocksize = 242001482020 bytes = 225 GiB

A Tind3 unit points to 226981 data blocks (238002289436 bytes)
block points to 13845841 data blocks
reli start 230795 max 14076635
max size 14076636*Maxdatablocksize = 14760141137616 bytes= 13 TiB

A Tind4 unit points to 13845841 data blocks (14518139655596 bytes)
block points to 844596301 data blocks
reli start 14076636 max 858672936
max size 858672937*Maxdatablocksize = 900366660128972 bytes= 818 TiB

 6

On an empty mafs filesystem mounted at /n/mafs, the disk contents added by the
below commands are:
mkdir /n/mafs/dir1
echo test > /n/mafs/dir1/file1

Tdentry 64 2

name dir1

version 0

path 64

size 0

pdblkno 20

pqpath 20

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 24

1 0

2 0

.

.

.

30 0

31 0

indirect blocks

0 0

1 0

2 0

Block 22 contents: /dir1 Dentry

Representation of a file in a directory: /dir1/file1

Tdentry 65 2

name file1

,version 0

path 65

size 5

pdblkno

pqpath 64

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

Block 24 contents: file1 Dentry

Tdentry 65 3

name file1

version 0

path 65

size 5

pdblkno

pqpath 64

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

test

Block 25 contents: file1 Dentry

 7

Tdentry 66 3

name dir2

version 0

path 66

size 0

pdblkno 20

pqpath 20

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 28

1 30

.

.

.

31 0

indirect blocks

0 0

1 0

2 0

Block 27 contents: /dir2 directory entry

Representation of two files in a directory (/dir2/file1 and /dir2/file2)

Tdentry 67 3

name file1

version 0

path 67

size 5

pdblkno 26

pqpath 66

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

test

Block 29 contents: file1 directory entry

Tdentry 68 3

name file2

version 0

path 68

size 5

pdblkno 26

pqpath 66

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

test

Block 31 contents: file2 directory entry

 8

iblocks[0] holds the block number of a Tind0 block. A Tind0 block contains a list of
Tdata block numbers for files or a list of Tdentry block numbers for directories.

iblocks[1] has the block number of a Tind1 block. A Tind1 block contains a list of Tind0
block numbers.

Similarly, for other iblocks[n] entries, iblocks[n] has the block number of a Tindn block.
A Tindn block contains a list of Tind(n−1) block numbers.

Relative index

The zero�th relative index in a directory entry is the first data block. The next relative
index is the second data block of the directory entry, and so on.

tests/6.reli shows how a relative index (reli) is translated into an actual disk block num
ber.

To find the actual block number where the first block (zero�th as zero indexed) of a file
is stored:

tests/6.reli 0 # command, below is the output of this command
reli 0
dblock[0]

To find the actual block number where the second block of a file is stored:
tests/6.reli 1
reli 1
dblock[1]

And so on, for the 32nd and 33rd blocks of a file:
tests/6.reli 31
reli 31
dblock[31]

tests/6.reli 32
reli 32
iblock[0] tagstartreli 32
Tind0 reli 0 is at [0] nperindunit 1

 9

Tdentry 70 5

name 2MB.file

version 0

path 70

size 2056192

pdblkno 32

pqpath 69

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 36

1 2084

2 0

.

.

indirect blocks

0 0

1 0

2 0

Block 34 contents

Representation of a 2 MiB file (/dir3/2MB.file)

Tdata 70 34 2048

0 0123456789 contents of 2MB.file

Block 36 contents

 10

Tdentry 64 106

name big.file

version 0

path 64

size 26214400

pdblkno 20

pqpath 20

mtime 1653302180819962729

mode 664

uid 10006

gid -1

muid 10006

direct blocks

0 24

1 2072

2 4120

.

.

31 63512

indirect blocks

0 67608

1 192538

2 0

Block 22 contents

Representation of a 100 MiB file (/big.file)

Tdata 64 22 2048

0 0123456789 starting contents

. of big.file

.

.

Block 24 contents

Tind0 64 60 22

0 65560

1 67610

2 69658

.

.

Block 67608 contents

Tdata 64 22 2048

0123456789 more content

. of big.file

.

Block 65560 contents

 11

__
System Files__

Block Description
0 magic dir entry and data
2 /adm/config dir entry
4 /adm/super dir entry__
6 /adm/ dir entry
8 /adm/users/ dir entry
10 /adm/bkp/ dir entry__
12 /adm/users/inuse dir entry
14 /adm/frees dir entry
16 /adm/ctl dir entry -- virtual file, empty contents__
18 /adm/users/staging dir entry
20 / direntry__

The /adm/ctl file is used to halt or sync the file system. /adm/users is a r/w file that
will reload users when written to it. The owner of the /adm/ctl file or any user belonging
to the sys group can ream the disk.

There is no /adm/magic directory entry as the block number of the magic block is zero
and zero block in a directory entry signifies the end of the directory contents.

Backup blocks

A copy of Config, Super and Root blocks is maintained. This ensures a backup of config,
Super and root blocks.

The backup block numbers on the disk are calculated during ream based on the disk
size.

Block Description Backup Block___
2 /adm/config last block number -2
4 /adm/super last block number -4
20 / last block number -6___

Mafs needs atleast Nminblocks=28 blocks (14 KiB).

kfs and cwfs use 8192 byte blocks. Hence, they store multiple directory entries (Dentry)
per block. They use slot numbers to identify a particular directory entry in a block of
directory entries. Mafs avoids that be using 512 byte blocks thus having only one direc
tory entry per block. This avoids locking up other sibling directory entries on access.

Users

Users are defined in /adm/users/inuse file. Any changes to it are made through the
/adm/users/staging file. All changes are written to the staging file and then inuse file is
updated by writing the command users to the /adm/ctl file.

Either all changes to /adm/users/inuse are installed or nothing is installed from the
/adm/users/staging file.

 12

The format of /adm/users/inuse is described in users(6).

Buffer cache − Hash buckets with a circular linked list of Iobuf’s for collisions.

An Iobuf is used to represent a block in memory. An Iobuf is unique to a block. All disk
interaction, except for free block management, happens through an Iobuf. We read a
block from the disk into an Iobuf. To update a block on the disk, we write to an Iobuf,
which, in-turn gets written to the disk.

An Iobuf is protected by a read-write lock (RWlock). This ensures synchronization across
multiple processes updating the same file.

getbuf(), putbuf(), putbufs() and putbuffree() are used to manage Iobuf�s. The contents
of an Iobuf is not touched unless it is locked by getbuf(). It is unlocked by putbuf(), put
bufs() or putbuffree() calls. The Iobuf.dirties Ref is decremented by the mafs writer�s
dowrite() without a lock(). This is to avoid deadlocks between putbuf() and the writer
especially when the writer queue is full.

allocblock() allocates a free block into an Iobuf. allocblocks() allocates a bunch of free
blocks with their own Iobuf�s.

freeblock() erases the Iobuf and returns the block to the free block management rou
tines.

Iobuf�s are organized into a list of hash buckets to speed up access.

Hiob *hiob = nil; /* array of nbuckets */
struct Hiob /* Hash bucket */
{

Iobuf* link; /* least recently used Iobuf in the circular linked list */
QLock; /* controls access to this hash bucket */
u64 n; /* count of Iobuf�s in the circular list */

};
struct Iobuf
{

Ref;
RWLock; /* controls access to this Iobuf */
u64 blkno; /* block number on the disk, primary key */
u16 len; /* number of Units */
Iobuf *fore; /* for lru */
Iobuf *back; /* for lru */
union{

u8 *xiobuf; /* "real" buffer pointer */
Data *io;
Metadata *m;

};
Metadataunit *cur; /* this has the current Indirect or Dentry values */
Metadataunit *new; /* use this unit for Indirect or Dentry changes */

u8 *append; /* appended data added not yet written to disk */
u64 appendsize;
u8 freshalloc; /* uninitialized blocks on the disk */
u64 atime; /* to find old buffers to flush to the disk */

 13

u8 tag;
};

The Iobuf�s are arranged into a list of hash buckets. Each bucket points a circular linked
list of Iobuf�s to handle collisions. If all the Iobuf�s in the circular linked list are locked,
new Iobuf�s are added to this linked list. This circular list is ordered on a least recently
used basis. Iobuf�s once added to this list are not removed. When an Iobuf is not in the
list, the oldest unlocked Iobuf is reused.

Hiob hiob[nbuckets] is a valid representation of the list of hash buckets. The block num
ber is hashed to arrive at the relevant hash bucket index.

hiob[hash(block number)].link = Address of Iobuf0, where Iobuf0 is the least recently
used Iobuf.

Iobuf 0 Iobuf 1 Iobuf 2

Iobuf n Iobuf n-1 Iobuf n-2

The size of the buffer cache is: number of hash buckets * collisions per hash bucket *
block size. The approximate size of the buffer cache = Nbuckets * Ncollisions * Raw
blocksize = 256 * 10 * 512 bytes = 1.28GiB. The -h parameter can be used to change
the number of hash buckets.

If you have RAM to spare, increase Nbuckets instead of Ncollisions as the hash index
lookup is faster than searching through a linked list.

Iobuf.Ref is used to avoid locking up the hash bucket when a process is waiting for a
lock on an Iobuf in that hash bucket.

Iobuf.Ref ensures that an Iobuf is not stolen before another process can get to
wlock()�ing it after letting go of the lock on the hash bucket. We cannot hold the lock on
the hash bucket until we wlock() the iobuf as that blocks other processes from using the
hash bucket. This could also result in a deadlock. For example, the directory entry is
block 18, which hashes to a hash index of 7. A writer() locked the directory entry iobuf
and wants to add a data block 84 to the directory entry. Block 84 hashes to the same
hash index of 7. Another process wanting to access the directory entry is waiting for a
lock on that io buffer. While doing so, it has locked the hash bucket. Now, this has
caused a deadlock between both these processes. The first process cannot proceed until
it can lock the hash bucket holding block 84 and is still holding the lock on the directory
entry in block 18. The second process cannot lock block 18 and is holding the lock on
the hash bucket.

for locking a buffer:
qlock(hash bucket); incref(buffer); qunlock(hash bucket);

wlock(buffer); decref(buffer);

for stealing an unused buffer:

 14

qlock(hash bucket);
find a buffer with ref == 0 and wlock()�able.
qunlock(hash bucket);

for unlocking a buffer:
wunlock(buffer);

Free blocks

Free blocks are managed using Extents. The list of free blocks is stored to the disk when
shutting down. If this state is not written, then the file system needs to be checked and
the list of free blocks should be updated.

When shutting down, the Extents are written to free blocks. This information can be
accessed from /adm/frees. Also, fsok in the super block is set to 1. Mafs does not start
until fsok is 1. When fsok = 0, run the sanity check that the unused blocks and the free
blocks in /adm/frees match up. disk/reconcile identifies any missing blocks or blocks
that are marked as both used and free.

This process of fixing issues and setting fsok to 1 is manual. There is no automatic file
system checker as in other file systems. This document aims to empower you with the
knowledge to fix your file system issues instead of entrusting your precious data to an
arbitrary decision maker such as the file system checker.

A tag of Tfree and Qpnone represent a free block. If a directory entry is removed, the
parent will have a zero�ed out child directory entry (Qid.path = 0) and a tag of Tdentry
and Qpnone.

Extents

Free blocks and memory are managed using Extents, an abstraction used to manage a
continuous list of items.

An Extent represents a continuous list of items. An Extents is a list of such Extent�s.

struct Extent {
struct Extent *low, *high; /* sorted by start */
u64 start; /* where this extent starts from */
u64 len; /* how many units in this extent */

/* circular least recently used linked list limited to Nlru items */
struct Extent *prev, *next;

};
struct Extents {

Extent *head; /* find the first block in a jiffy */
QLock lck;
u32 n; /* number of extents */
Rendez isempty; /* fully used, nothing available */

u8 nlru; /* number of items in the lru linked list */
Extent *lru; /* least recently used extent in the circular lru linked list */
char name[32];

 15

void (*flush)(void);
};

To allocate n items from Extents, we find the lowest (by block number or memory
address) extent that can satisfy our request. If a bigger Extent is available, slice it and
take the portion we need.

If there is no available Extent to satisfy our request, panic().

allocblock() and freeblock() use balloc() and bfree() respectively. balloc() assigns blocks
from an extent and bfree() adds them to an extent for next allocation.

Extents at memory location 1

lru 100 assuming that the Extent at 100 was used last

el 0 unlocked

n 3

blkno 10

len 1

low 0

high 200

Extent at 100

blkno 20

len 3

low 100

high 300

Extent at 200

blkno 30

len 2

low 200

high 0

Extent at 300

+
freed block numbers

11,12,13,14
=

blkno 10

len 5

low 0

high 200

Extent at 100

blkno 20

len 3

low 100

high 300

Extent at 200

blkno 30

len 2

low 200

high 0

Extent at 300

blkno len

20 3

Extents before

+
Block number 40

followed
by 3 free blocks

=

blkno len

20 3

40 4

Extents after

 16

blkno len

100 5

110 3

Extents before

+
Block number 105

followed
by 4 free blocks

=
blkno len

100 13

Extents after

blkno len

105 4

Extents before

+
Block number 101

followed
by 3 free blocks

=
blkno len

101 8

Extents after

blkno len

101 4

Extents before

+
Block number 105

followed
by 3 free blocks

=
blkno len

100 8

Extents after

blkno len

180 4

Extents before

+
Block number 250

followed
by 3 free blocks

=

blkno len

180 4

250 4

Extents after

blkno len

250 4

Extents before

+
Block number 180

followed
by 3 free blocks

=

blkno len

180 4

250 4

Extents after

Kfs stores the list of free blocks in a Tfrees block and the Superblock. Instead we use
block management routines, similar to pool.h, to allocate and monitor free blocks. On
shutdown(), the block management routines (extents.[ch]) store state into the free
blocks. This can be read from /adm/frees. On startup, this is read back by the block
management routines. On a crash, the fsck can walk the directory structure to identify
the free blocks and recreate /adm/frees.

 17

Code details

__
Program Description__

disk/mafs Start mafs on a disk.__
disk/free List the free blocks. It reads the contents of /adm/frees.__
disk/used List the used blocks by traversing all directory entries.__
disk/block Show the contents of a block.__
disk/unused Lists the unused blocks when given extents of used blocks.__
disk/updatefrees Update the contents of /adm/frees.__

__
File Description chatty9p__

9p.c 9p transactions 2__
blk.c routines to show blocks.__
console.c obsolete. /adm/ctl is the console.__
ctl.c /adm/ctl operations.__
dentry.c encode/decode the file system abstraction into block operations. 3__
extents.[ch] routines to manage the free blocks. 6__
iobuf.c routines on Iobuf�s. The bkp() routines operate on Iobuf�s. 5__
sub.c initialization and super block related routines. 2__
tag.c routines to manage a relative index (reli) in a directory entry.__
user.c user management routines.__

A Chan�s state could get out of sync with the contents if another process changes the
on-disk state. Ephase error occurs when that happens.

For throughput, multiple processes are used to service 9p i/o requests when the -s flag
is not used.

Useful commands:

Ream and start single process Mafs on a disk and also mount it for use.

mount -c <{disk/mafs -s -r mafs_myservice mydisk <[0=1]} /n/mafs_myservice
-s: use stdin and stdout for communication
-r mafs_myservice: ream the disk using mafs_myservice as the service name
mydisk: running mafs on the disk, mydisk

Ream and start multiple-process mafs on a disk.

disk/mafs -r mafs_myservice mydisk
mount -c /srv/mafs_myservice /n/mafs_myservice

 18

Ream and start mafs on a file. Also, mount thet filesystem at /n/mafs_myservice.

dd -if /dev/zero -of myfile -bs 512 -count 128 # 64KB file
mount -c <{disk/mafs -s -r mafs_service myfile <[0=1]} /n/mafs_myservice

to reuse the contents of myfile later, remove -r (ream) from the above command.
mount -c <{disk/mafs -s myfile <[0=1]} /n/mafs_myservice

Prepare and use a disk (/dev/sdF1) for mafs.

disk/fdisk -bawp /dev/sdF1/data # partition the disk
echo �
a fs 9 $-7
w
p
q� | disk/prep -b /dev/sdF1/plan9 # add an fs plan 9 partition to the disk
disk/mafs -r mafs_sdF1 /dev/sdF1/fs # -r to ream the disk
mount -c /srv/mafs_sdF1 /n/mafs_sdF1

for using the mafs file system on the disk later on
disk/mafs /dev/sdF1/fs # no -r
mount -c /srv/mafs_sdF1 /n/mafs_sdF1

Starting mafs on a 2MB byte file. The below commands create a disk.file to use as a
disk. Mount /n/mafs_disk.file for the file system.

dd -if /dev/zero -of disk.file -bs 512 -count 4096;
mount -c <{disk/mafs -s -r mafs_disk.file disk.file \

<[0=1]} /n/mafs_disk.file

Starting mafs on a RAM file. The below commands create a ramfs filesystem to use as a
disk.

ramfs -m /n/mafs_ramfs
touch /n/mafs_ramfs/file
dd -if /dev/zero -of /n/mafs_ramfs/file -count 700 -bs 1m
disk/mafs -r mafs_ramfs_file /n/mafs_ramfs/file
mount -c /srv/mafs_ramfs_file /n/mafs_ramfs_file

Sync Mafs. This command does not return until all the writes are written to the disk. So,
could take a long time if you have a long writer queue.

echo sync >> /n/mafs_myservice/adm/ctl

Stop Mafs: There are 2 ways to shutdown:
1. Unmount and remove the /srv/mfs_service file (can be rm and unmount too).
2. Write halt into the /adm/ctl file. Unmount() the mafs file system to keep it clean.

In the first instance, the srv() process is driving the shutdown. It calls fsend(). rm
/srv/mfs_service file does not wait for fsend() to finish. Hence, there is no way to ensure
that memory contents have been flushed to the disk. If the system is shutdown or res
tarted immediately, there is a very high possibility that the filesystem will be in an incon
sistent state.

 19

In the second instance, fsend() is called by the worker process. It does not return until
all the pending writes have been flushed to the disk. It also removes the
/srv/mafs_service file and also stops the srv() process. Hence, this is the preferred
approach to shutting down the file system.

There is no way to unmount() automatically on shutdown. The mount() and unmount()
calls are client driven and it is not the responsibility of the server to find all the clients
that mounted it. Just shutdown and let the respective clients deal with their mess.

The below command does not return until all the writes are written to the disk. So, could
take a long time if you have a long writer queue. This is the proper way to shutdown the
mafs file system.

echo halt >> /n/mafs_myservice/adm/ctl

Interpret the contents of a block based on the tag and write out a single formatted block
based on the tag

disk/block tests/test.0/disk 22

Traverse the directory heirarchy and write out all the used block numbers.
disk/reconcile uses the output of this to reconcile the list of used blocks with the list of
free blocks. Also, writes the invalid blocks to stderr. Starting from root, walk down each
directory entry printing out the linked blocks with invalid tags. (Why not just write out
the list of dirty blocks too? instead of using a different command for it?)

disk/used tests/test.0/disk

From the contents of /adm/frees show the list of free blocks. disk/reconcile uses the
output of this to reconcile the list of used blocks with the list of free blocks.

disk/free tests/test.0/disk

Read two lists of block numbers and flag the common and missing blocks.

disk/reconcile -u <{disk/used tests/test.0/disk} \
-F <{disk/free tests/test.0/disk} 32

Find traverses the directory heirarchy and identifies the file that a block number belongs
to.

disk/find tests/test.0/disk 17

Find the total number of blocks on a disk.

dd -if /dev/sdF1/fs -bs 512 -iseek 1 -count 1 -quiet 1 | awk �$1 == "nblocks" { print $2 }�

disk/block /dev/sdF1/fs 1 | awk �$1 == "nblocks" { print $2 }�

Build the list of free blocks. This should match the contents of /adm/frees.

disk/unused <{disk/used /dev/sdF1/fs} 11721040049 # 11721040049 = total number of disk blocks
disk/unused <{disk/used test.0/disk} 32 # 32 = total number of disk blocks

 20

Change the contents of /adm/frees.

disk/updatefrees tests/test.0/disk <{disk/unused <{disk/used tests/test.0/disk} 32}
disk/updatefrees /dev/sdF1/fs <{disk/unused <{disk/used /dev/sdF1/fs} 11721040049}

A sanity check that the file system is not corrupt by comparing that the unused blocks
and free blocks match up. $nblocks is the total number of disk blocks. $disk is the disk.

diff <{disk/unused -l <{disk/used tests/test.0/disk} 32}} <{disk/free tests/test.0/disk}

 21

Tests

__
Program Description__

tests/regress.rc All regression tests
tests/chkextents.rc Unit tests on extents
tests/chkreli.rc Unit tests on relative index lookups
tests/chknlastdatablocks.rc Unit tests on the number of blocks in the last Tdata block__
tests/6.offsets Write file using different offsets to test mafswrite()
tests/6.sizes Show the effects of the different parameters
tests/6.testextents Test extents.[ch] state changes
tests/6.reli Translate relative index to block number on a disk__

The below disk state tests:
1. Initialize a disk for mafs.
2. Run mafs on that dsk.
3. Stop mafs.
4. Compare the contents with the expected contents (tests/test.0/blocks/*).

__
Disk State__

Test Description__
tests/test.0 empty disk
tests/test.1 create a file /dir1/file1 and echo test into it
tests/test.2 writes at different offsets to a file and then removes the file__
tests/test.3 write, read and delete files with sizes upto 16384 blocks
tests/test.4 directory copy
tests/test.5 fcp gzipped files__
tests/test.6 df
tests/test.7 multiple processes working on the filesystem simultaneously
tests/test.8 check backup blocks locations__
tests/test.9 examples used by this document
tests/test.a write, read and delete a 100MB file
tests/test.b duplicate of test.2 but seeded with random data__
tests/test.d seed with random data and do mkdir -p a/b/c/d/e/f/g/h
tests/test.e seed with random data and test directory and file deletions__

__
Extents behaviour__

Test Description__
tests/extents/addabove Figure 1 of the Extents section
tests/extents/addabove1 Figure 2 of the Extents section
tests/extents/addbelow Figure 3 of the Extents section__
tests/extents/mergeabove Figure 4 of the Extents section
tests/extents/mergenext Figure 5 of the Extents section
tests/extents/mergeprevious Figure 6 of the Extents section__

To run all the regression tests:
cd tests/; ./regress.rc

 22

To loop through all the blocks of a test:
for(t in tests/test.2/blocks/^�{seq 0 39}*){ echo $t; echo �---------�; cat $t; echo }

Performance metrics

ramfs -m /n/ramfs
touch /n/ramfs/file
cat /dev/zero | tput -p > /n/ramfs/file

196.00 MB/s
198.76 MB/s
187.58 MB/s
176.96 MB/s
175.87 MB/s
180.42 MB/s
183.52 MB/s
185.99 MB/s
187.96 MB/s
189.54 MB/s
190.83 MB/s
191.89 MB/s
192.80 MB/s

dd -if /dev/zero -of /n/ramfs/file -count 700 -bs 1m

disk/mafs -r mafs_ramfs_file /n/ramfs/file
mount -c /srv/mafs_ramfs_file /n/mafs_ramfs_file
cat /dev/zero | tput -p > /n/mafs_ramfs_file/zeros.file # increase memunits for speed

122.50 MB/s
122.13 MB/s
122.27 MB/s
122.28 MB/s

echo halt >> /n/mafs_ramfs_file/adm/ctl; lc /srv
unmount /n/mafs_ramfs_file

dd -if /dev/zero -of /n/ramfs/file -count 700 -bs 1m
hjfs -f /n/ramfs/file -r
echo allow >>/srv/hjfs.cmd
mount -c /srv/hjfs /n/hjfs/
cat /dev/zero | tput -p > /n/hjfs/zeros.file

70.85 MB/s
71.02 MB/s
70.88 MB/s
70.62 MB/s
70.46 MB/s
70.54 MB/s
69.74 MB/s
68.63 MB/s
67.74 MB/s
67.02 MB/s
63.81 MB/s

echo halt >>/srv/hjfs.cmd
unmount /n/ramfs

Profiling instructions:

 23

Set LDFLAGS=-p in the mkfile and install the executables.
profilesize=2000000
ramfs -m /n/ramfs
touch /n/ramfs/file
dd -if /dev/zero -of /n/ramfs/file -count 700 -bs 1m
mount -c <{disk/mafs -s -r mafs_disk.file /n/ramfs/file <[0=1]} /n/mafs_ramfs_file
cat /dev/zero | tput -p > /n/mafs_ramfs_file/zeros.file

57.94 MB/s
55.27 MB/s
46.67 MB/s

echo halt >> /n/mafs_ramfs_file/adm/ctl; lc /srv

Limitations

As we use packed structs to store data to the disk, a disk with mafs is not portable to a
machine using a different endian system.

Design considerations

For exclusive use (mode has DMEXCL bit set) files, there is no timeout.

Use an fs(3) device for RAID or other configuration involving multiple disks.

Why are you not using a checksum to verify the contents?
Checksums are probabilistic and can be implemented as a bespoke application instead
of complicating the file system implementation.

Source

http://git.9front.org/plan9front/mafs/HEAD/info.html

References

[1] Sean Quinlan, "A Cached WORM File System," Software--Practice and Experience, Vol
21., No 12., December 1991, pp. 1289-1299
[2] Ken Thompson, Geoff Collyer, "The 64-bit Standalone Plan 9 File Server"

