
Mafs − Plan 9 userspace file system

Mafs wants you to be able to understand it, so you can be self-sufficient and fix a crash
at two in the morning or satisfy your desire for speed or a feature. This empowerment is
priceless as software literacy rises and leaner teams dominate.

Mafs is a user space file system to provide system stability and security. It is based on
kfs.

As this document aims to also provide working knowledge, it gratuitously uses the
actual commands and the relevant C data structure definitions to convey information.

Workflow

Chan.aux has
file offset, etc.

Client

multiple

workers

9p
Abstractions

Directory
File

Data Structures

Dentry

Buffer cache
used blocks

Extents
free blocks

writer

In-memory
block contents

Disk
blocks

Disk Contents

Mafs organizes and saves content on a disk as directories and files, just like any other
filesystem.

The unit of storage is a logical block (not physical sector) of data. Disk space is split into
512 byte logical blocks.

A sample disk of 2048 bytes with 4 blocks.

 2

disk of
2048 bytes

disk of
2048 bytes

Block

0

1

2

3

A block is stored to the disk with a Tag.
struct Tag
{

u8 type; /* Tfree, Tmagic, Tdentry, Tdata, Tindn */
u64 path; /* Qid.path, unique identifier of directory or file */

};

Every file or directory is represented on the disk by a directory entry (Dentry). A direc
tory entry uses a block (Tag.type = Tdentry) and is uniquely identifiable by a Qid.

A file stores its contents in blocks with a Tag.type of Tdata. A directory holds the direc
tory entries of it�s children in blocks with a Tag.type of Tdentry.

The blocks used by a file or directory entry are listed in their directory entry. As it is not
possible to represent big files using a list of blocks, the blocks are structured to use
multiple levels of indirection as file size increases.

A file�s data blocks are identified by a tag of Tdata and that file�s Qid.path. A directory�s
data blocks are identified by a tag of Tdentry and Qid.path of the child directory entry.
(Is this quirky? Should the child�s directory entry have a tag o the parent�s Qid.path?)

A block number of zero represents the end of the file�s contents. If a file is truncated,
the data and indirect blocks are given up and the dentry.dblocks[0] = 0.

 3

Mafs does not store the last access time of a file or directory.

The different types of blocks on a disk are:
enum
{

Tfree = 0, /* free block */
Tmagic, /* the first (zero�th) block holds a magic word */
Tdentry, /* directory entry */

/* Tindn are last, to allow for future increases */
Tdata, /* actual file contents */
Tind0, /* contains a list of Tdata block numberss for files

and Tdentry block numbers for directories.*/
Tind1, /* contains a list of Tind0 block numbers */
Tind2, /* contains a list of Tind1 block numbers */
Tind3, /* contains a list of Tind2 block numbers */
Tind4, /* contains a list of Tind3 block numbers */
Tind5, /* contains a list of Tind4 block numbers, maximum file size 26 TiB */

};

A directory entry is defined as:
enum {

Rawblocksize= 512, /* real block size */
Ndblock = 32,/* number of direct blocks in a Dentry */
Niblock = 6, /* maximum depth of indirect blocks */

};
struct Qid9p1
{

u32 version;
u64 path; /* unique identifier */

};

struct Dentry1
{

Qid9p1 qid;
u64 size; /* 0 for directories. For files, size in bytes of the content */
u64 pdblkno; /* parent dentry absolute block number. 0 for root. */
u64 pqpath; /* parent qid.path */
u64 mtime; /* modified time nano seconds from epoch */
u32 mode; /* same bits as defined in lib.h Dir.mode */
s16 uid;
s16 gid;
s16 muid;
u64 dblocks[Ndblock]; /* direct blocks. */

/* List of Tdata block numbers for files and
Tdentry block numbers for directories */

/* Tag.type = Tdentry for directories and Tdata for files */
u64 iblocks[Niblock]; /* indirect blocks */

};

/*
* Derived constants
* Ndentryperblock: number of directory entries per block
* Nindperblock: number of block pointers per block
*/

 4

enum {
Blocksize = Rawblocksize - sizeof(Tag),
Namelen = (Blocksize-sizeof(Dentry1)), /* maximum size of the name of a file or directory */

Ndentryperblock = 1, /* Blocksize / sizeof(Dentry), */
Nindperblock = Blocksize / sizeof(u64),

};
struct Dentry
{

struct Dentry1;
char name[Namelen];

};

A directory entry once assigned is not given up until the parent directory is removed. It
is zero�ed if the directory entry is removed. It is reused by the next directory entry cre
ated under that parent directory. This removes the need for garbage collection of direc
tory entries on removals and also avoids zero block numbers in the middle of a direc
tory. A zero block number while traversing a directory entry�s dblocks or iblocks repre
sents the end of directory or file contents. When a directory is removed, the parent will
have a directory entry with a tag of Tdentry and Qpnone and the rest of the contents set
to zero.

A directory�s size is always zero.

tests/6.sizes # shows the values of the above derived variables.
Namelen 144 Ndblock 32 Niblock 6
Blocksize 502 Nindperblock 62
A Tind0 unit points to 1 data blocks (502 bytes)

block points to 62 data blocks
reli start 32 max 93
max size 94*Blocksize = 47188 bytes

A Tind1 unit points to 62 data blocks (31124 bytes)
block points to 3844 data blocks
reli start 94 max 3937
max size 3938*Blocksize = 1976876 bytes = 1 MiB

A Tind2 unit points to 3844 data blocks (1929688 bytes)
block points to 238328 data blocks
reli start 3938 max 242265
max size 242266*Blocksize = 121617532 bytes = 115 MiB

A Tind3 unit points to 238328 data blocks (119640656 bytes)
block points to 14776336 data blocks
reli start 242266 max 15018601
max size 15018602*Blocksize = 7539338204 bytes = 7 GiB

A Tind4 unit points to 14776336 data blocks (7417720672 bytes)
block points to 916132832 data blocks
reli start 15018602 max 931151433
max size 931151434*Blocksize = 467438019868 bytes = 435 GiB

A Tind5 unit points to 916132832 data blocks (459898681664 bytes)
block points to 56800235584 data blocks
reli start 931151434 max 57731387017
max size 57731387018*Blocksize = 28981156283036 bytes = 26 TiB

 5

On an empty mafs filesystem mounted at /n/mafs, the disk contents added by the
below commands are:
mkdir /n/mafs/dir1
echo test > /n/mafs/dir1/file1

Tdentry 64

qid.version 0

qid.path 64

size 0

pdblkno 3

pqpath 63

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 19

1 0

2 0

.

.

.

30 0

31 0

indirect blocks

0 0

1 0

2 0

3 0

4 0

5 0

name dir1

Block 18 contents: /dir1 Dentry

Representation of a file in a directory: /dir1/file1

Tdentry 65

qid.version 0

qid.path 65

size 5

pdblkno 18

pqpath 64

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

direct blocks

0 20 content is in Block 20

1 0

2 0

.

.

.

30 0

31 0

indirect blocks

0 0

1 0

2 0

3 0

4 0

5 0

name file1

Block 19 contents: file1 Dentry

Contents of block 20 are:
disk/block tests/test.1/disk 20
Tdata 65
test

 6

Tdentry 66

qid.version 0

qid.path 66

size 0

pdblkno 3

pqpath 63

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 22

1 24

.

.

.

31 0

indirect blocks

0 0

.

5 0

name dir2

Block 21 contents: /dir2 directory entry

Representation of two files in a directory (/dir2/file1 and /dir2/file2)

Tdentry 67

qid.version 0

qid.path 67

size 5

pdblkno 21

pqpath 66

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

direct blocks

0 23

1 0

.

.

.

31 0

indirect blocks

0 0

.

5 0

name file1

Block 22 contents: file1 directory entry

Tdentry 68

qid.version 0

qid.path 68

size 5

pdblkno 21

pqpath 66

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

direct blocks

0 25

1 0

.

.

.

31 0

indirect blocks

0 0

.

5 0

name file2

Block 24 contents: file2 directory entry

 7

iblocks[0] has the block number of a Tind0 block. A Tind0 block contains a list of Tdata
block numbers for files or a list of Tdentry block numbers for directories.

iblocks[1] has the block number of a Tind1 block. A Tind1 block contains a list of Tind0
block numbers.

Similarly, for other iblocks[n] entries, iblocks[n] has the block number of a Tindn block.
A Tindn block contains a list of Tind(n−1) block numbers.

Relative index

The zero�th relative index in a directory entry is the first data block. The next relative
index is the second data block of the directory entry, and so on.

tests/6.reli shows how a relative index (reli) is translated into an actual disk block num
ber.

To find the actual block number where the first block (zero�th as zero indexed) of a file
is stored:
tests/6.reli 0 # command, below is the output of this command
reli 0
dblock[0]

To find the actual block number where the second block of a file is stored:
tests/6.reli 1
reli 1
dblock[1]

And so on, for the 32nd and 33rd blocks of a file:
tests/6.reli 31
reli 31
dblock[31]

tests/6.reli 32
reli 32
iblock[0]
Tind0 reli 0 is at [0]

This is how the last block of a 26 TiB file would be stored:
tests/6.reli 57731387017
reli 57731387017
iblock[5]
Tind5 reli 56800235583 is at [61]
Tind4 reli 916132831 is at [61]
Tind3 reli 14776335 is at [61]
Tind2 reli 238327 is at [61]
Tind1 reli 3843 is at [61]
Tind0 reli 61 is at [61]

 8

Tdentry 1 70

qid.version 0

qid.path 70

size 2056192

pdblkno 26

pqpath 69

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 28

1 29

2 30

.

.

indirect blocks

0 61

1 124

2 4031

3 0

name 2MB.file

Block 27 contents

Representation of a 2 MB file (/dir3/2MB.file)

Tdata 70

0 0123456789 contents of 2MB.file

Block 28 contents

 9

Tdentry 72

qid.version 0

qid.path 72

size 26214400

pdblkno 4045

pqpath 71

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct blocks

0 4195

1 4196

2 4197

.

.

31 4226

indirect blocks

0 4228

1 4291

2 8198

3 0

name 25MB.file

Block 4046 contents

Representation of a 25MB file (/dir4/25MB.file)

Tdata 72

0 0123456789 starting contents

. of 25MB.file

.

.

Block 4195 contents

Tind0 72

0 4227

1 4229

2 4230

.

.

61 4289

Block 4228 contents

Tdata 72

789 more content

. of 25MB.file

.

Block 4227 contents

 10

System Files__

Block Description Directory entry Content___
0 magic
1 config Y
2 super Y
3 / Y___
4 /adm/ Y
5 /adm/config Y
6 /adm/super Y___
7 /adm/users Y
8 /adm/users Y___
9 /adm/bkp/ Y
10 /adm/bkp/config.0 Y
11 /adm/bkp/super.0 Y
12 /adm/bkp/root.0 Y
13 /adm/bkp/config.1 Y
14 /adm/bkp/super.1 Y
15 /adm/bkp/root.1 Y___
16 /adm/ctl (virtual file, empty contents) Y
17 /adm/frees Y___

The /adm/ctl file is used to halt or sync the file system. /adm/users is a r/w file that
will reload users when written to it. The owner of the /adm/ctl file or any user belonging
to the sys group can ream the disk.

There is no /adm/magic as the block number of the magic block is zero and zero block
in a directory entry signifies the end of the directory contents.

Backup blocks

Three copies of Config, Super and Root blocks are maintained. This ensures two back
ups of config, Super and root blocks.

The backup block numbers on the disk are calculated during ream based on the disk
size.

Backup Blocks

Block Description 1 2___
1 config last block number -1 middle block number -1
2 super block (obsolete?) last block number -2 middle block number -2
3 / last block number -3 middle block number -3___

Mafs needs atleast Nminblocks=17 blocks (8.5 KB). The middle block number is Nmin
blocks + ((nblocks - Nminblocks)/2), where nblocks = total number of blocks.

kfs and cwfs use 8192 byte blocks. Hence, they store multiple directory entries (Dentry)
per block. They use slot numbers to identify a particular directory entry in a block of
directory entries. Mafs avoids that be using 512 byte blocks thus having only one direc
tory entry per block. This avoids locking up other sibling directory entries on access.

 11

Buffer cache − Hash buckets with a circular linked list of Iobuf’s for collisions.

An Iobuf is used to represent a block in memory. An Iobuf is unique to a block. All disk
interaction, except for free block management, happens through an Iobuf. We read a
block from the disk into an Iobuf. To update a block on the disk, we write to an Iobuf,
which, in-turn gets written to the disk.

An Iobuf is protected by a read-write lock (RWlock). This ensures synchronization across
multiple processes updating the same file.

getbuf(), putbuf() and putbuffree() are used to manage Iobuf�s. The contents of an Iobuf
is not touched unless it is locked between getbuf(), putbuf() and putbuffree() calls. The
Iobuf.dirties Ref is decremented by the writer�s dowrite() without a lock(). This is to
avoid deadlocks between putbuf() and the writer especially when the writer queue is full.

allocblock() allocates a free block into an Iobuf.

freeblock() erases the Iobuf and returns the block to the free block management rou
tines.

Iobuf�s are organized into a list of hash buckets to speed up access.

struct Hiob /* Hash bucket */
{

Iobuf* link; /* least recently used Iobuf in the circular linked list */
QLock; /* controls access to this hash bucket */

};
struct Iobuf
{

Ref;
RWLock; /* controls access to this Iobuf */
u64 blkno; /* block number on the disk, primary key */
Iobuf *fore; /* for lru */
Iobuf *back; /* for lru */
union{

u8 *xiobuf; /* "real" buffer pointer */
Content *io; /* cast�able to contents */

};
Ref dirties; /* number of versions of this block yet to be written by the writer */

};

The Iobuf�s are arranged into a list of hash buckets. Each bucket points a circular linked
list of Iobuf�s to handle collisions. If all the Iobuf�s in the circular linked list are locked,
new Iobuf�s are added to this linked list. This circular list is ordered on a least recently
used basis. Iobuf�s once added to this list are not removed. When an Iobuf is not in the
list, the oldest unlocked Iobuf is reused.

Hiob hiob[nbuckets] is a valid representation of the list of hash buckets. The block num
ber is hashed to arrive at the relevant hash bucket index.

hiob[hash(block number)].link = Address of Iobuf0, where Iobuf0 is the least recently
used Iobuf.

 12

Iobuf 0 Iobuf 1 Iobuf 2

Iobuf n Iobuf n-1 Iobuf n-2

The size of the buffer cache is: number of hash buckets * collisions per hash bucket *
block size. The approximate size of the buffer cache = Nbuckets * Ncollisions * Raw
blocksize = 256 * 10 * 512 bytes = 1.28GiB. The -h parameter can be used to change
the number of hash buckets.

If you have RAM to spare, increase Nbuckets instead of Ncollisions as the hash index
lookup is faster than searching through a linked list.

Iobuf.Ref is used to avoid locking up the hash bucket when a process is waiting for a
lock on an Iobuf in that hash bucket.

Iobuf.Ref ensures that an Iobuf is not stolen before another process can get to
wlock()�ing it after letting go of the lock on the hash bucket. We cannot hold the lock on
the hash bucket until we wlock() the iobuf as that blocks other processes from using the
hash bucket. This could also result in a deadlock. For example, the directory entry is
block 18, which hashes to a hash index of 7. A writer() locked the directory entry iobuf
and wants to add a data block 84 to the directory entry. Block 84 hashes to the same
hash index of 7. Another process wanting to access the directory entry is waiting for a
lock on that io buffer. While doing so, it has locked the hash bucket. Now, this has
caused a deadlock between both these processes. The first process cannot proceed until
it can lock the hash bucket holding block 84 and is still holding the lock on the directory
entry in block 18. The second process cannot lock block 18 and is holding the lock on
the hash bucket.

for locking a buffer:
qlock(hash bucket); incref(buffer); qunlock(hash bucket);

wlock(buffer); decref(buffer);

for stealing an unused buffer:
qlock(hash bucket);
find a buffer with ref == 0 and wlock()�able.
qunlock(hash bucket);

for unlocking a buffer:
wunlock(buffer);

 13

Asynchronous writes

The blocks to be written to a disk are stored to a linked list represented by:
struct Dirties
{

QLock lck; /* controls access to this queue */
Wbuf *head, *tail; /* linked list of dirty blocks yet to be written to the disk */
s32 n;
Rendez isfull; /* write throttling */
Rendez isempty; /* writer does not have to keep polling to find work */

} drts = {0};

struct Wbuf
{

u64 blkno; /* block number on the disk, primary key */
Wbuf *prev, *next;
Iobuf *iobuf; /* pointer to the used Iobuf in the buffer cache */
union{

u8 payload; /* "real" contents */
Content io; /* cast�able to contents */

};
};

A writer process takes the blocks from the Dirties linked list on a FIFO (first-in-first-out)
basis and writes them to the disk. putbuf() adds blocks to the end of this linked list.

The dirty blocks not yet written to the disk remain in the buffer cache and cannot be
stolen when a need for new Iobuf arises.

Free�d blocks are not written to the disk to avoid writing blanks to a disk.

The writer throttles input when there are more than Npendingwrites waiting to be writ
ten. This can be adjusted with the -w parameter.

Free blocks − Extents

Free blocks are managed using Extents. The list of free blocks is stored to the disk when
shutting down. If this state is not written, then the file system needs to be checked and
the list of free blocks should be updated.

When shutting down, the Extents are written to free blocks. This information is written
to /adm/frees. Also, fsok in the super block is set to 1. When fsok = 0, run an fsck
(filesystem checker) to correct any inconsistencies on the disk.

A tag of Tfree and Qpnone represent a free block. If a directory entry is removed, the
parent will have a zero�ed out child directory entry (Qid.path = 0) and a tag of Tdentry
and Qpnone.

 14

Algorithm to allocate blocks from Extents:
1. Of all the Extents with the length we need, pick the Extent with the lowest block num

ber (blkno).
2. If no Extent of the length we need is available, then break up the smallest extent.

struct Extent {
struct Extent *low, *high; /* sorted by start */
u64 start; /* where this extent starts from */
u64 len; /* how many units in this extent */

};
struct Extents {

Extent *lru; /* least recently used extent */
Extent *head; /* find the first block in a jiffy */
QLock lck;
u32 n; /* number of extents */
Rendez isempty; /* fully used, nothing available */

};

allocblock() and freeblock() use balloc() and bfree() respectively. balloc() assigns blocks
from an extent and bfree() adds them to an extent for next allocation.

Extents at memory location 1

lru 100 assuming that the Extent at 100 was used last

el 0 unlocked

n 3

 15

blkno 10

len 1

low 0

high 200

small 0

big 300

Extent at 100

blkno 20

len 3

low 100

high 300

small 300

big 0

Extent at 200

blkno 30

len 2

low 200

high 0

small 100

big 200

Extent at 300

+
freed block numbers

11,12,13,14
=

blkno 10

len 5

low 0

high 200

small 200

big 0

Extent at 100

blkno 20

len 3

low 100

high 300

small 300

big 100

Extent at 200

blkno 30

len 2

low 200

high 0

small 200

big 100

Extent at 300

blkno len

20 3

Extents before

+
Block number 40

followed
by 3 free blocks

=

blkno len

20 3

40 4

blkno len

20 3

40 4

Extents after

blkno len

100 5

110 3

Extents before

+
Block number 105

followed
by 4 free blocks

=

blkno len

100 13

blkno len

100 13

Extents after

 16

blkno len

105 4

Extents before

+
Block number 101

followed
by 3 free blocks

=

blkno len

101 8

blkno len

101 8

Extents after

blkno len

101 4

Extents before

+
Block number 105

followed
by 3 free blocks

=

blkno len

100 8

blkno len

100 8

Extents after

blkno len

180 4

Extents before

+
Block number 250

followed
by 3 free blocks

=

blkno len

180 4

250 4

blkno len

180 4

250 4

Extents after

 17

blkno len

250 4

Extents before

+
Block number 180

followed
by 3 free blocks

=

blkno len

180 4

250 4

blkno len

180 4

250 4

Extents after

Kfs stores the list of free blocks in a Tfrees block and the Superblock. Instead we use
block management routines, similar to pool.h, to allocate and monitor free blocks. On
shutdown(), the block management routines (extents.[ch]) store state into the free
blocks. This can be read from /adm/frees. On startup, this is read back by the block
management routines. On a crash, the fsck can walk the directory structure to identify
the free blocks and recreate /adm/frees.

Code details

__
Program Description__

disk/mafs Start mafs on a disk__
disk/free List the free blocks__
disk/used List the used blocks__
disk/block Show the contents of a block__

__
File Description chatty9p__

9p.c 9p transactions 2__
sub.c initialization and super block related routines. 2__
dentry.c encode/decode the file system abstraction into block operations. 3__
iobuf.c routines on Iobuf�s. The bkp() routines operate on Iobuf�s. 5__
extents.[ch] routines to manage the free blocks. 6__
ctl.c /adm/ctl operations.__
tag.c routines to manage a relative index (reli) in a directory entry.__
blk.c routines to show blocks.__
writer.c disk writer routines.__
console.c obsolete. /adm/ctl is the console.__

A Chan�s state could get out of sync with the contents if another process changes the
on-disk state. Ephase error occurs when that happens.

For throughput, multiple processes are used to service 9p i/o requests.

 18

Useful commands:

Ream and start single process Mafs on a disk and also mount it for use.

mount -c <{disk/mafs -s -r mafs_myservice -h 10 mydisk <[0=1]} /n/mafs_myservice
-s: use stdin and stdout for communication
-r myservice: ream the disk using mafs_myservice as the service name
-h 10: use 10 hash buckets
mydisk: running Mafs on the mydisk

Ream and start multiple-process mafs on a disk.

disk/mafs -r mafs_myservice -h 10 mydisk
mount -c /srv/mafs_myservice /n/mafs_myservice

Ream and start mafs on a file. Also, mount thet filesystem at /n/mafs_myservice.

dd -if /dev/zero -of myfile -bs 512 -count 128 # 64KB file
mount -c <{disk/mafs -s -r mafs_service -h 10 myfile <[0=1]} /n/mafs_myservice

for reusing the contents of myfile later, remove -r (ream).
mount -c <{disk/mafs -s -h 10 myfile <[0=1]} /n/mafs_myservice

Prepare and use a disk (/dev/sdF1) for mafs.

disk/fdisk -bawp /dev/sdF1/data # partition the disk
echo �
a fs 9 $-7
w
p
q� | disk/prep -b /dev/sdF1/plan9 # add an fs plan 9 partition to the disk
disk/mafs -r mafs_sdF1 /dev/sdF1/fs # -r to ream the disk
mount -c /srv/mafs_sdF1 /n/mafs_sdF1

for using the mafs file system on the disk later on
disk/mafs /dev/sdF1/fs sdF1 # no -r
mount -c /srv/mafs_sdF1 /n/mafs_sdF1

Starting mafs on a 2MB byte file. The below commands create a disk.file to use as a
disk. Mount /n/mafs_disk.file for the file system.

dd -if /dev/zero -of disk.file -bs 512 -count 4096;
mount -c <{disk/mafs -s -r mafs_disk.file -m 1 -n mafs_disk.file \

<[0=1]} /n/mafs_disk.file

Starting mafs on a RAM file. The below commands create a ramfs filesystem to use as a
disk.

ramfs -m /n/mafs_ramfs
touch /n/mafs_ramfs/file
dd -if /dev/zero -of /n/mafs_ramfs/file -count 700 -bs 1m
disk/mafs -r mafs_ramfs_file /n/mafs_ramfs/file
mount -c /srv/mafs_ramfs_file /n/mafs_ramfs_file

 19

Sync Mafs. This command does not return until all the writes are written to the disk. So,
could take a long time if you have a long writer queue.

echo sync >> /n/mafs_myservice/adm/ctl

Stop Mafs. This command does not return until all the writes are written to the disk. So,
could take a long time if you have a long writer queue.

echo halt >> /n/mafs_myservice/adm/ctl

Interpret the contents of a block based on the tag and write out a single formatted block
based on the tag

disk/block tests/test.0/disk 22

Traverse the directory heirarchy and write out all the used block numbers.
disk/reconcile uses the output of this to reconcile the list of used blocks with the list of
free blocks. Also, writes the invalid blocks to stderr. Starting from root, walk down each
directory entry printing out the linked blocks with invalid tags. Why not just write out
the list of dirty blocks too? instead of using a different command for it?

disk/used tests/test.0/disk

From the contents of /adm/frees show the list of free blocks. disk/reconcile uses the
output of this to reconcile the list of used blocks with the list of free blocks

disk/free tests/test.0/disk

Read two lists of block numbers and flag the common and missing blocks.

disk/reconcile -u <{disk/used tests/test.0/disk} \
-F <{disk/free tests/test.0/disk} 32

Find traverses the heirarchy and identifies the file that a block number belongs to.

disk/find disk.file blocknumber

Tests

Program Description___

tests/regress.rc All regression tests
tests/chkextents.rc Unit tests on extents
tests/chkreli.rc Unit tests on relative index lookups___
tests/6.offsets Write file using different offsets to test mafswrite()
tests/6.sizes Show the effects of the different parameters
tests/6.testextents Test extents.[ch] state changes
tests/6.reli Translate relative index to block number on a disk___

The below disk state tests:
1. Initializes a disk for mafs.
2. Run mafs on that dsk.

 20

3. Stop mafs.
4. Compares the contents with the expected contents (tests/test.0/blocks/*).

__
Disk State__

Test Description__
tests/test.0 empty disk
tests/test.1 create a file /dir1/file1 and echo test into it
tests/test.2 writes at different offsets to a file and then removes the file__
tests/test.3 write, read and delete files with sizes upto 16384 blocks
tests/test.4 directory copy
tests/test.5 fcp gzipped files__
tests/test.6 df
tests/test.7 multiple processes working on the filesystem simultaneously
tests/test.8 check backup blocks locations__
tests/test.9 examples used by this document
tests/test.a write, read and delete a 100MB file
tests/test.b duplicate of test.2 but seeded with random data
tests/test.d seed with random data and do mkdir -p a/b/c/d/e/f/g/h__

__
Extents behaviour__

Test Description__
tests/extents/addabove Figure 1 of the Extents section
tests/extents/addabove1 Figure 2 of the Extents section
tests/extents/addbelow Figure 3 of the Extents section__
tests/extents/mergeabove Figure 4 of the Extents section
tests/extents/mergenext Figure 5 of the Extents section
tests/extents/mergeprevious Figure 6 of the Extents section__

To loop through all the blocks of a test:
for(t in tests/test.2/blocks/^�{seq 0 39}*){ echo $t; echo �---------�; cat $t; echo }

Limitations

As we use packed structs to store data to the disk, a disk with mafs is not portable to a
machine using a different endian system.

Source

http://git.9front.org/plan9front/mafs/HEAD/info.html

References

[1] Sean Quinlan, "A Cached WORM File System," Software--Practice and Experience, Vol
21., No 12., December 1991, pp. 1289-1299
[2] Ken Thompson, Geoff Collyer, "The 64-bit Standalone Plan 9 File Server"

