
Mafs − Plan 9 userspace file system

Mafs wants you to be able to understand it, so you can be self-sufficient and fix a crash
at two in the morning or satisfy your desire for speed or a feature. This empowerment is
priceless as software literacy rises.

Mafs is a user space file system to provide system stability and security. It is based on
kfs.

Workflow

Chan.aux has
file offset, etc.

Client

multiple

workers

9p
Abstractions

Directory
File

Data Structures
Dentry
Span

Buffer cache
used blocks

Extents
free blocks

Disk
blocks

Disk Contents

Mafs organizes and saves content on a disk as directories and files, just like any other
filesystem.

The unit of storage is a logical block (not physical sector) of data. Disk space is split into
512 byte logical blocks. For optimum throughput, file data blocks are logically grouped
into Spans.

A Tag identifies a Span written to the disk. A continuous space of Tag.len blocks makes
up each Span. To efficiently manage system memory across numerous users and files,
the size of each Span is constrained.

­ 2 ­

A sample disk of 2048 bytes with 4 blocks and 2 Spans

disk of
2048 bytes

disk of
2048 bytes

Block

0

1

2

3

Tag.len 2

Tag.len 1

disk of
2048 bytes

Block

0

1

2

3

Span

0

1

The different types of possible Span�s on a disk are:
enum
{

Tfree = 0, /* free blocks */
Tmagic, /* the first (zero�th) block holds a magic word */
Tdentry, /* directory entry */

/* Tindn are last, to allow for future increases */
Tdata, /* file contents */
Tind0, /* list of Tdata Spans for files or Tdentry Spans for directories.*/
Tind1, /* list of Tind0 blocks */
Tind2, /* list of Tind1 blocks */
Tind3, /* list of Tind2 blocks. we can have a 11 TB file */

};

A Span is stored to the disk with a Tag.
struct Tag
{

u64 path; /* Qid.path, unique identifier of directory or file */
u8 type; /* Tfree, Tmagic, Tdentry, Tdata, Tindn */
u8 dirty; /* is 1, when being written to.

Identifies dirty data on a crash.
This byte position is denoted by the enum Nthdirty. */

u16 len; /* number of blocks in this Span */
};

Every file or directory is represented on the disk by a directory entry (Dentry). Every
directory entry uses a 1-block Span (Tag.type = Tdentry) and is uniquely identifiable by
a Qid.

Mafs does not store the last access time of a file or directory.

A Dentry is defined as:
enum {

Rawblocksize= 512, /* real block size */
Ndspanid = 24, /* number of direct Span identifiers in a Dentry */
Niblock = 4, /* max depth of indirect blocks */

};

­ 3 ­

struct Qid9p1
{

u32 version;
u64 path; /* unique identifier */

};
struct Spanid /* Span identifier */
{

u64 blkno; /* starting block number */
u16 len; /* number of blocks */

};
struct Dentry1
{

Qid9p1 qid;
u64 size; /* 0 for directories. For files, size in bytes of the content */
u64 pdblkno; /* parent dentry absolute block number. 0 for root. */
u64 pqpath; /* parent qid.path */
u64 mtime; /* modified time nano seconds from epoch */
u32 mode; /* same bits as defined in lib.h Dir.mode */
s16 uid;
s16 gid;
s16 muid;
Spanid dspans[Ndspanid];/* direct Span identifiers */

/* Tag.type = Tdentry for directories and Tdata for files */
u64 iblocks[Niblock]; /* indirect blocks */

};

/*
* derived constants
* Ndentriesperblock: number of Dentry�s per block
* Nindperblock: number of block pointers per block
* Nspanidperblock: number of Span identifiers per a Tind0 block
*/

enum {
Blocksize = Rawblocksize - sizeof(Tag),
Namelen = (Blocksize-sizeof(Dentry1)), /* max size of file name components */
Maxspanlen = MB/Rawblocksize, /* in blocks */
Maxspansize = (Maxspanlen*Rawblocksize)-sizeof(Tag), /* in bytes */

Ndentryperblock = 1, /* Blocksize / sizeof(Dentry), */
Nindperblock = Blocksize / sizeof(u64),
Nspanidperblock = Blocksize / sizeof(Spanid),

};
struct Dentry
{

struct Dentry1;
char name[Namelen];

};

­ 4 ­

Tdentry 1 64

qid.version 0

qid.path 64

size 0

pdblkno 3

pqpath 63

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct spans

0 19 1

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20 0 0

21 0 0

22 0 0

23 0 0

indirect blocks

0 0

1 0

2 0

3 0

name dir1

Block 18 contents: /dir1 Dentry

Representation of a file in a directory: /dir1/file1

Tdentry 1 65

qid.version 0

qid.path 65

size 5

pdblkno 18

pqpath 64

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

direct spans

0 20 1 content is in Block 20

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20 0 0

21 0 0

22 0 0

23 0 0

indirect blocks

0 0

1 0

2 0

3 0

name file1

Block 19 contents: file1 Dentry

­ 5 ­

Tdentry 1 66

qid.version 0

qid.path 66

size 0

pdblkno 3

pqpath 63

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct spans

0 22 1

1 24 1

.

.

.

23 0 0

indirect blocks

0 0

.

3 0

name dir2

Block 21 contents: /dir2 Dentry

Representation of two files in a directory (/dir2/file1 and /dir2/file2)

Tdentry 1 67

qid.version 0

qid.path 67

size 5

pdblkno 21

pqpath 66

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

direct spans

0 23 1

1 0 0

.

.

.

23 0 0

indirect blocks

0 0

.

3 0

name file1

Block 22 contents: file1 Dentry

Tdentry 1 68

qid.version 0

qid.path 68

size 5

pdblkno 21

pqpath 66

mtime 1653302180823455071

mode 666

uid 10006

gid -1

muid 10006

direct spans

0 25 1

1 0 0

.

.

.

23 0 0

indirect blocks

0 0

.

3 0

name file2

Block 24 contents: file2 Dentry

­ 6 ­

Tdentry 1 70

qid.version 0

qid.path 70

size 2056192

pdblkno 26

pqpath 69

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct spans

0 28 2048

1 2076 1969

2 0 0

.

.

name 2MB.file

Block 27 contents

Representation of a 2 MB file (/dir3/2MB.file)

Tdata 2048 70

0 0123456789 contents of 2MB.file

Block 28 contents

­ 7 ­

Tdentry 1 72

qid.version 0

qid.path 72

size 26214400

pdblkno 4045

pqpath 71

mtime 1653302180819962729

mode 20000000777

uid 10006

gid -1

muid 10006

direct spans

0 8123 2048

1 10171 2048

2 12219 2048

.

.

23 57249 2048

indirect blocks

0 22434

1 0

2 0

3 0

name 25MB.file

Block 4046 contents

Representation of a 25MB file (/dir4/25MB.file)

Tdata 2048 72

0 0123456789 starting contents

. of 25MB.file

.

.

Block 8123 contents

Tind0 1 72

0 59297 2048

1 18363 1

2 0 0

.

.

49 0 0

Block 22434 contents

Tdata 2048 72

6789 more content

. of 25MB.file

.

Block 59297 contents

kfs and cwfs do not use Spans. They use blocks but with a size of 8192 bytes to avoid
dealing with small data blocks (less system calls, context switches, etc). Hence, they
store multiple directory entries (Dentry) per block. They use slot numbers to identify a
particular directory entry in a block of directory entries. Instead, we use variable length

­ 8 ­

Span�s for Tdata. All other types of data use 1 block Span�s. This makes us use bigger
sized content for data blocks (lesser system calls, context switches, etc.).

iblocks[0] contains the block number of a Tind0 Span(1 block). A Tind0 Span is a list of
Span identifiers with the block numbers of Tdata Span�s for files and Tdentry Span�s for
directories.

iblocks[1] contains the block number of a Tind1 Span(1 block). A Tind1 Span is a list of
block numbers of Tind0 blocks.

Similarly, for other iblocks[n] entries, iblocks[n] contains the block number of a Tindn

Span(1 block). A Tindn Span is a list of block numbers of Tind(n−1) blocks.

The Tag.dirty flag is set while a Span is being written. This helps identify dirty Span�s
after a crash.

To increase read and write throughput, all Tdata allocations will be Span�s (Block num­
ber + len). The maximum Span length is 1MB (Maxspanlen blocks). Only the last span
can be less than 1MB size.

A directory entry once assigned is not given up until the parent directory is removed. It
is zero�ed if the directory entry is removed. It is reused by the next directory entry cre­
ated under that parent directory. This removes the need for garbage collection of direc­
tory entries on removals and also avoids zero block numbers in the middle of a direc­
tory. A zero block number while traversing a directory�s dspanids or iblocks represents
the end of directory or file contents. When a directory is removed, the parent will have a
directory entry with a tag of Tdentry and Qpnone and the rest of the contents set to
zero.

A directory�s size is always zero.

A file�s data blocks are identified by a tag of Tdata and Qid.path. A block number of
zero represents the end of the file�s contents. If a file is truncated, the data and indirect
blocks are given up and the dentry.dspanids[0] = (Spanid){0,0}.

The directory entry is locked with a read-write lock (RWlock) for any file operations. This
ensures synchronization across multiple processes updating the same file.

Why is the Span�s len stored in the directory entry when the same information can be
obtained from the block�s Tag.len?
1. This avoids an extra read call for the Tag.len before getting the contents from the

disk. Instead, we can read the contents with one read call as we know the number of
blocks to read. Also, it works as a cross-checking mechanism if the Tag gets over­
written.

2. Code is simpler when we store the length of the Span in the directory entry.

­ 9 ­

Disk State after ream - System Files__

Block Description Directory entry Content___
0 magic
1 config Y
2 super Y
3 / Y___
4 /adm/ Y
5 /adm/config Y
6 /adm/super Y___
7 /adm/users Y
8 /adm/users Y___
9 /adm/bkp/ Y
10 /adm/bkp/config.0 Y
11 /adm/bkp/super.0 Y
12 /adm/bkp/root.0 Y
13 /adm/bkp/config.1 Y
14 /adm/bkp/super.1 Y
15 /adm/bkp/root.1 Y___
16 /adm/ctl (virtual file, empty contents) Y
17 /adm/frees Y___




















































The /adm/ctl file is used to halt or sync. /adm/users is a r/w file that will reload users
when written to it. The owner of the /adm/ctl file or any user belonging to the sys group
can ream the disk.

There is no /adm/magic as the block number of the magic block is zero and zero block
in a directory entry signifies the end of the directory contents.

Backup blocks

Three copies of Config, Super and Root blocks are maintained. This ensures two back­
ups of config, Super and root blocks.

The backup block numbers on the disk are calculated during ream based on the disk
size.

Backup Blocks

Block Description 1 2___
1 config last block number -1 middle block number -1
2 super block (obsolete?) last block number -2 middle block number -2
3 / last block number -3 middle block number -3___














Mafs needs atleast Nminblocks=17 blocks (8.5 KB). The middle block number is Nmin­
blocks + ((nblocks - Nminblocks)/2), where nblocks = total number of blocks.

Buffer cache − Hash buckets with circular linked list of Iobuf’s for collisions.

An Iobuf is used to represent a Span in memory. An Iobuf is unique to a Span. All disk
interaction, except for free block management, happens through an Iobuf. We read

­ 10 ­

Span�s from the disk into an Iobuf. To update Span�s on the disk, we write to an Iobuf,
which, in-turn gets written to the disk.

getbuf() and putbuf() are used to manage Iobuf�s. The contents of an Iobuf is not
touched unless it is locked between getbuf() and putbuf() calls.

allocblocks() allocates free blocks into an Iobuf.

freeblocks() erases the Iobuf and returns the blocks to the free block management rou­
tines.

Iobuf�s are organized into a list of hash buckets to speed up access.

struct Hiob /* Hash bucket */
{

Iobuf* link; /* least recently used Iobuf in the circular linked list */
QLock;

};
struct Iobuf
{

Ref;
RWLock;
u64 blkno; /* block number on the disk, primary key */
u16 len; /* number of blocks of data xiobuf points to */
Iobuf *fore; /* for lru */
Iobuf *back; /* for lru */
union{

u8 *xiobuf; /* "real" buffer pointer */
Content *io; /* cast�able to contents */

}
int flags;

};

The Iobuf�s are arranged into a hash structure of Nbuckets. Each bucket has a circular
linked list of Ncollisions� Iobuf�s to handle collisions. If all the Iobuf�s in the circular
linked list are locked, new Iobuf�s are added to this linked list. This circular list is
ordered on a least recently used basis. Iobuf�s once added to this list are not removed.
When an Iobuf is not in the list, the oldest unlocked Iobuf is reused.

Hiob hiob[nbuckets] is a valid representation of the list of hash buckets. The block num­
ber of the Span is hashed to arrive at the relevant hash bucket index.

hiob[hash(block number)].link = Address of Iobuf0, where Iobuf0 is the least recently
used Iobuf.

Iobuf 0 Iobuf 1 Iobuf 2

Iobuf n Iobuf n-1 Iobuf n-2

­ 11 ­

The size of the buffer cache is approximately: number of hash buckets * collisions per
hash bucket * Maximum Span size. By default, the approximate size of the buffer cache
= Nbuckets * Ncollisions * Maxspansize = 256 * 10 * 1MB = 2.56GB. The -h parameter
can be used to change the number of hash buckets.

Free blocks − Extents

Free blocks are managed using Extents. The list of free blocks is stored to the disk when
shutting down. If this state is not written, then the file system needs to be checked and
the list of free blocks should be updated.

When shutting down, the Extents are written to free blocks. This information is written
to /adm/frees. Also, fsok in the super block is set to 1. When fsok = 0, run an fsck
(filesystem checker) to correct the issue.

A tag of Tfree and Qpnone represents a free block. If a directory entry is removed, the
parent will have a zero�ed out child directory entry (Qid.path = 0) and a tag of Tdentry
and Qpnone.

Algorithm to allocate blocks from Extents:
1. Of all the Extents with the length we need, pick the Extent with the lowest block num­

ber (blkno).
2. If no Extent of the length we need is available, then break up the smallest extent.

struct Extent {
struct Extent *low, *high; /* sorted by blkno */
struct Extent *small, *big;/* sorted by len */
u64 blkno; /* block number */
u64 len; /* in blocks */

};
struct Extents {

Extent *lru; /* least recently used extent */
QLock el;
u32 n; /* number of extents */

};

allocblocks() and freeblocks() use balloc() and bfree(). balloc() assigns blocks and bfree()
holds them for next allocation.

Extents at memory location 1

lru 100 assuming that the Extent at 100 was used last

el 0 unlocked

n 3

­ 12 ­

blkno 10

len 1

low 0

high 200

small 0

big 300

Extent at 100

blkno 20

len 3

low 100

high 300

small 300

big 0

Extent at 200

blkno 30

len 2

low 200

high 0

small 100

big 200

Extent at 300

+
freed block numbers

11,12,13,14
=

blkno 10

len 5

low 0

high 200

small 200

big 0

Extent at 100

blkno 20

len 3

low 100

high 300

small 300

big 100

Extent at 200

blkno 30

len 2

low 200

high 0

small 200

big 100

Extent at 300

blkno len

20 3

Extents before

+
Block number 40

followed
by 3 free blocks

=

blkno len

20 3

40 4

blkno len

20 3

40 4

Extents after

blkno len

100 5

110 3

Extents before

+
Block number 105

followed
by 4 free blocks

=

blkno len

100 13

blkno len

100 13

Extents after

­ 13 ­

blkno len

105 4

Extents before

+
Block number 101

followed
by 3 free blocks

=

blkno len

101 8

blkno len

101 8

Extents after

blkno len

101 4

Extents before

+
Block number 105

followed
by 3 free blocks

=

blkno len

100 8

blkno len

100 8

Extents after

blkno len

180 4

Extents before

+
Block number 250

followed
by 3 free blocks

=

blkno len

180 4

250 4

blkno len

180 4

250 4

Extents after

­ 14 ­

blkno len

250 4

Extents before

+
Block number 180

followed
by 3 free blocks

=

blkno len

180 4

250 4

blkno len

180 4

250 4

Extents after

Kfs stores the list of free blocks in a Tfrees block and the Superblock. Instead we use
block management routines, similar to pool.h, to allocate and monitor free blocks. On
shutdown(), the block management routines (extents.[ch]) store state into the free
blocks. This can be read from /adm/frees. On startup, this is read back by the block
management routines. On a crash, the fsck can walk the directory structure to identify
the free blocks and recreate /adm/frees.

Code details

File Description chatty9p__

9p.c 9p transactions 2___
sub.c initialization and super block related routines. 2___
dentry.c encode/decode the file system abstraction into block operations. 3___
iobuf.c routines on Iobuf�s. The bkp() routines operate on Iobuf�s. 5___
extents.[ch] routines to manage the free blocks. 6___
ctl.c /adm/ctl operations.___
tag.c routines to convert from a relative index in a directory entry to a tag.___
blk.c routines to show blocks.___
console.c obsolete. /adm/ctl is the console.___




























































A Chan�s state could get out of sync with the contents if another process changes the
on-disk state. Ephase error occurs when that happens.

For throughput, multiple processes are used to service 9p i/o requests.

Useful commands:

Ream and start single process Mafs on a disk and also mount it for use.

mount -c <{disk/mafs -s -r mafs_myservice -h 10 mydisk <[0=1]} /n/mafs_myservice
-s: use stdin and stdout for communication
-r myservice: ream the disk using mafs_myservice as the service name
-h 10: use 10 hash buckets
mydisk: running Mafs on the mydisk

­ 15 ­

Ream and start multiple-process mafs on a disk.

disk/mafs -r mafs_myservice -h 10 mydisk
mount -c /srv/mafs_myservice /n/mafs_myservice

Ream and start mafs on a file. Also, mount thet filesystem at /n/mafs_myservice.

dd -if /dev/zero -of myfile -bs 512 -count 128 # 64KB file
mount -c <{disk/mafs -s -r mafs_service -h 10 myfile <[0=1]} /n/mafs_myservice

for reusing the contents of myfile later, remove -r (ream).
mount -c <{disk/mafs -s -h 10 myfile <[0=1]} /n/mafs_myservice

Prepare and use a disk (/dev/sdF1) for mafs.

disk/fdisk -bawp /dev/sdF1/data # partition the disk
echo �
a fs 9 $-7
w
p
q� | disk/prep -b /dev/sdF1/plan9 # add an fs plan 9 partition to the disk
disk/mafs -r mafs_sdF1 /dev/sdF1/fs # -r to ream the disk
mount -c /srv/mafs_sdF1 /n/mafs_sdF1

for using the mafs file system on the disk later on
disk/mafs /dev/sdF1/fs sdF1 # no -r
mount -c /srv/mafs_sdF1 /n/mafs_sdF1

Stop Mafs.

echo halt >> /n/mafs_myservice/adm/ctl

Interpret the contents of a block based on the tag and write out a single formatted block
based on the tag

disk/block tests/test.0/disk 22

Traverse the directory heirarchy and write out all the used block numbers.
disk/reconcile uses the output of this to reconcile the list of used blocks with the list of
free blocks. Also, writes the invalid blocks to stderr. Starting from root, walk down each
directory entry printing out the linked blocks with invalid tags. Why not just write out
the list of dirty blocks too? instead of using a different command for it?

disk/used tests/test.0/disk

From the contents of /adm/frees show the list of free blocks. disk/reconcile uses the
output of this to reconcile the list of used blocks with the list of free blocks

disk/free tests/test.0/disk

Read two lists of block numbers and flag the common and missing blocks.

disk/reconcile -u <{disk/used tests/test.0/disk} \
-F <{disk/free tests/test.0/disk} 32

­ 16 ­

Find traverses the heirarchy and identifies the file that the block number belongs to.

disk/find disk.file blocknumber

Starting mafs on a 2MB byte file. The above commands will create a disk.file to use as a
disk. Mount /n/mafs_disk.file for the file system.

dd -if /dev/zero -of disk.file -bs 512 -count 4096;
mount -c <{disk/mafs -s -r mafs_disk.file -m 1 -n mafs_disk.file \

<[0=1]} /n/mafs_disk.file

tests/sizes.c shows the maximum file size representable by a Dentry.
: tests ; ./6.sizes
Namelen 174 Ndspanid 24 Niblock 4
Blocksize 500 Nspanidperblock 50 Nindperblock 62
Maxspanlen 2048 Maxspansize 1048564
A Tind0 unit points to 1 data spans (1048564 bytes)

block points to 50 data spans
A Tind1 unit points to 50 data spans (52428200 bytes)

block points to 3100 data spans
A Tind2 unit points to 3100 data spans (3250548400 bytes)

block points to 192200 data spans
A Tind3 unit points to 192200 data spans (201534000800 bytes)

block points to 11916400 data spans
sizeof(Dentry1) 326 Namelen 174
maxsize direct spans max 24
maxsize Tind0 50 max 74
maxsize Tind1 3100 max 3174
maxsize Tind2 192200 max 195374
maxsize Tind3 11916400 max 12111774
maximum possible spans 12111774

(12111774*Maxspansize = 12699970192536 bytes)
(12111774*Maxspansize = 12699970192536 bytes = 11 TB)

Tests

tests/regress.rc: Regression tests.

tests/6.offsets: Write file using different offsets to test mafswrite().

tests/6.sizes: Show the effects of the different parameters.

tests/chkextents.rc: Unit tests on extents.

tests/6.testextents: Test extents.[ch] state changes.

The below disk state tests:
1. Initializes a disk for mafs.
2. Run mafs on that dsk.
3. Stop mafs.
4. Compares the contents with the expected contents (tests/test.0/blocks/*).

­ 17 ­

__
Disk State__

Test Description__
tests/test.0 empty disk
tests/test.1 create a file /dir1/file1 and echo test into it
tests/test.2 writes at different offsets to a file and then removing the file__
tests/test.3 write, read and deletion of files with sizes upto 16384 blocks
tests/test.4 directory copy
tests/test.5 fcp gzipped files__
tests/test.6 df
tests/test.7 multiple processes working on the filesystem simultaneously
tests/test.8 check backup blocks locations__
tests/test.9 examples used by this document
tests/test.a write, read and delete a 100MB file__




































__
Extents behaviour__

Test Description__
tests/extents/addabove Figure 1 of the Extents section
tests/extents/addabove1 Figure 2 of the Extents section
tests/extents/addbelow Figure 3 of the Extents section__
tests/extents/mergeabove Figure 4 of the Extents section
tests/extents/mergenext Figure 5 of the Extents section
tests/extents/mergeprevious Figure 6 of the Extents section__






















To loop through all the blocks of a test:
for(t in tests/test.2/blocks/^�{seq 0 39}*){ echo $t; echo �---------�; cat $t; echo }

Limitations

As we use packed structs to store data to the disk, a disk with mafs is not be portable to
a machine using a different endian system.

References

[1] Sean Quinlan, "A Cached WORM File System," Software--Practice and Experience, Vol
21., No 12., December 1991, pp. 1289-1299
[2] Ken Thompson, Geoff Collyer, "The 64-bit Standalone Plan 9 File Server"

