ref: 4c96751045a7f0baf6b3a872c20ada9da1bcd5f8
dir: /sys/src/9/pc64/main.c/
#include "u.h"
#include "tos.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
#include "ureg.h"
#include "pool.h"
#include "rebootcode.i"
Conf conf;
int delaylink;
int idle_spin;
extern void (*i8237alloc)(void);
extern void bootscreeninit(void);
void
confinit(void)
{
char *p;
int i, userpcnt;
ulong kpages;
if(p = getconf("service")){
if(strcmp(p, "cpu") == 0)
cpuserver = 1;
else if(strcmp(p,"terminal") == 0)
cpuserver = 0;
}
if(p = getconf("*kernelpercent"))
userpcnt = 100 - strtol(p, 0, 0);
else
userpcnt = 0;
conf.npage = 0;
for(i=0; i<nelem(conf.mem); i++)
conf.npage += conf.mem[i].npage;
conf.nproc = 100 + ((conf.npage*BY2PG)/MB)*5;
if(cpuserver)
conf.nproc *= 3;
if(conf.nproc > 2000)
conf.nproc = 2000;
conf.nimage = 200;
conf.nswap = conf.nproc*80;
conf.nswppo = 4096;
if(cpuserver) {
if(userpcnt < 10)
userpcnt = 70;
kpages = conf.npage - (conf.npage*userpcnt)/100;
conf.nimage = conf.nproc;
} else {
if(userpcnt < 10) {
if(conf.npage*BY2PG < 16*MB)
userpcnt = 50;
else
userpcnt = 60;
}
kpages = conf.npage - (conf.npage*userpcnt)/100;
/*
* Make sure terminals with low memory get at least
* 4MB on the first Image chunk allocation.
*/
if(conf.npage*BY2PG < 16*MB)
imagmem->minarena = 4*MB;
}
/*
* can't go past the end of virtual memory.
*/
if(kpages > ((uintptr)-KZERO)/BY2PG)
kpages = ((uintptr)-KZERO)/BY2PG;
conf.upages = conf.npage - kpages;
conf.ialloc = (kpages/2)*BY2PG;
/*
* Guess how much is taken by the large permanent
* datastructures. Mntcache and Mntrpc are not accounted for.
*/
kpages *= BY2PG;
kpages -= conf.nproc*sizeof(Proc)
+ conf.nimage*sizeof(Image)
+ conf.nswap
+ conf.nswppo*sizeof(Page*);
mainmem->maxsize = kpages;
/*
* the dynamic allocation will balance the load properly,
* hopefully. be careful with 32-bit overflow.
*/
imagmem->maxsize = kpages - (kpages/10);
if(p = getconf("*imagemaxmb")){
imagmem->maxsize = strtol(p, nil, 0)*MB;
if(imagmem->maxsize > mainmem->maxsize)
imagmem->maxsize = mainmem->maxsize;
}
}
void
machinit(void)
{
int machno;
Segdesc *gdt;
uintptr *pml4;
machno = m->machno;
pml4 = m->pml4;
gdt = m->gdt;
memset(m, 0, sizeof(Mach));
m->machno = machno;
m->pml4 = pml4;
m->gdt = gdt;
m->perf.period = 1;
/*
* For polled uart output at boot, need
* a default delay constant. 100000 should
* be enough for a while. Cpuidentify will
* calculate the real value later.
*/
m->loopconst = 100000;
}
void
mach0init(void)
{
conf.nmach = 1;
MACHP(0) = (Mach*)CPU0MACH;
m->machno = 0;
m->pml4 = (u64int*)CPU0PML4;
m->gdt = (Segdesc*)CPU0GDT;
machinit();
active.machs[0] = 1;
active.exiting = 0;
}
void
init0(void)
{
char buf[2*KNAMELEN], **sp;
chandevinit();
if(!waserror()){
snprint(buf, sizeof(buf), "%s %s", arch->id, conffile);
ksetenv("terminal", buf, 0);
ksetenv("cputype", "amd64", 0);
if(cpuserver)
ksetenv("service", "cpu", 0);
else
ksetenv("service", "terminal", 0);
setconfenv();
poperror();
}
kproc("alarm", alarmkproc, 0);
sp = (char**)(USTKTOP - sizeof(Tos) - 8 - sizeof(sp[0])*4);
sp[3] = sp[2] = nil;
strcpy(sp[1] = (char*)&sp[4], "boot");
sp[0] = nil;
touser(sp);
}
void
main(void)
{
mach0init();
bootargsinit();
ioinit();
i8250console();
quotefmtinstall();
screeninit();
print("\nPlan 9\n");
trapinit0();
i8253init();
cpuidentify();
meminit0();
archinit();
meminit();
ramdiskinit();
confinit();
xinit();
bootscreeninit();
if(i8237alloc != nil)
i8237alloc();
trapinit();
printinit();
cpuidprint();
mmuinit();
if(arch->intrinit)
arch->intrinit();
timersinit();
mathinit();
if(arch->clockenable)
arch->clockenable();
procinit0();
initseg();
if(delaylink){
bootlinks();
pcimatch(0, 0, 0);
}else
links();
chandevreset();
preallocpages();
pageinit();
userinit();
schedinit();
}
static void
rebootjump(uintptr entry, uintptr code, ulong size)
{
void (*f)(uintptr, uintptr, ulong);
uintptr *pte;
splhi();
arch->introff();
/*
* This allows the reboot code to turn off the page mapping
*/
*mmuwalk(m->pml4, 0, 3, 0) = *mmuwalk(m->pml4, KZERO, 3, 0);
*mmuwalk(m->pml4, 0, 2, 0) = *mmuwalk(m->pml4, KZERO, 2, 0);
if((pte = mmuwalk(m->pml4, REBOOTADDR, 1, 0)) != nil)
*pte &= ~PTENOEXEC;
if((pte = mmuwalk(m->pml4, REBOOTADDR, 0, 0)) != nil)
*pte &= ~PTENOEXEC;
mmuflushtlb();
/* setup reboot trampoline function */
f = (void*)REBOOTADDR;
memmove(f, rebootcode, sizeof(rebootcode));
/* off we go - never to return */
coherence();
(*f)(entry, code, size);
for(;;);
}
void
exit(int)
{
cpushutdown();
if(m->machno)
rebootjump(0, 0, 0);
arch->reset();
}
void
reboot(void *entry, void *code, ulong size)
{
writeconf();
vmxshutdown();
/*
* the boot processor is cpu0. execute this function on it
* so that the new kernel has the same cpu0. this only matters
* because the hardware has a notion of which processor was the
* boot processor and we look at it at start up.
*/
if (m->machno != 0) {
procwired(up, 0);
sched();
}
cpushutdown();
delay(1000);
splhi();
/* turn off buffered serial console */
serialoq = nil;
/* shutdown devices */
chandevshutdown();
rebootjump((uintptr)entry & (ulong)~0xF0000000UL, PADDR(code), size);
}
/*
* SIMD Floating Point.
* Assembler support to get at the individual instructions
* is in l.s.
*/
extern void _clts(void);
extern void _fldcw(u16int);
extern void _fnclex(void);
extern void _fninit(void);
extern void _fxrstor(void*);
extern void _fxsave(void*);
extern void _fwait(void);
extern void _ldmxcsr(u32int);
extern void _stts(void);
/*
* not used, AMD64 mandated SSE
*/
void
fpx87save(FPsave*)
{
}
void
fpx87restore(FPsave*)
{
}
void
fpssesave(FPsave *s)
{
_fxsave(s);
_stts();
}
void
fpsserestore(FPsave *s)
{
_clts();
_fxrstor(s);
}
static char* mathmsg[] =
{
nil, /* handled below */
"denormalized operand",
"division by zero",
"numeric overflow",
"numeric underflow",
"precision loss",
};
static void
mathnote(ulong status, uintptr pc)
{
char *msg, note[ERRMAX];
int i;
/*
* Some attention should probably be paid here to the
* exception masks and error summary.
*/
msg = "unknown exception";
for(i = 1; i <= 5; i++){
if(!((1<<i) & status))
continue;
msg = mathmsg[i];
break;
}
if(status & 0x01){
if(status & 0x40){
if(status & 0x200)
msg = "stack overflow";
else
msg = "stack underflow";
}else
msg = "invalid operation";
}
snprint(note, sizeof note, "sys: fp: %s fppc=%#p status=0x%lux",
msg, pc, status);
postnote(up, 1, note, NDebug);
}
/*
* math coprocessor error
*/
static void
matherror(Ureg *, void*)
{
/*
* Save FPU state to check out the error.
*/
fpsave(up->fpsave);
up->fpstate = FPinactive | (up->fpstate & (FPnouser|FPkernel|FPindexm));
mathnote(up->fpsave->fsw, up->fpsave->rip);
}
/*
* SIMD error
*/
static void
simderror(Ureg *ureg, void*)
{
fpsave(up->fpsave);
up->fpstate = FPinactive | (up->fpstate & (FPnouser|FPkernel|FPindexm));
mathnote(up->fpsave->mxcsr & 0x3f, ureg->pc);
}
void
fpinit(void)
{
/*
* A process tries to use the FPU for the
* first time and generates a 'device not available'
* exception.
* Turn the FPU on and initialise it for use.
* Set the precision and mask the exceptions
* we don't care about from the generic Mach value.
*/
_clts();
_fninit();
_fwait();
_fldcw(0x0232);
_ldmxcsr(0x1900);
}
/*
* math coprocessor emulation fault
*/
static void
mathemu(Ureg *ureg, void*)
{
ulong status, control;
int index;
if(up->fpstate & FPillegal){
/* someone did floating point in a note handler */
postnote(up, 1, "sys: floating point in note handler", NDebug);
return;
}
switch(up->fpstate & ~(FPnouser|FPkernel|FPindexm)){
case FPactive | FPpush:
_clts();
fpsave(up->fpsave);
case FPinactive | FPpush:
up->fpstate += FPindex1;
case FPinit | FPpush:
case FPinit:
fpinit();
index = up->fpstate >> FPindexs;
if(index < 0 || index > (FPindexm>>FPindexs))
panic("fpslot index overflow: %d", index);
if(userureg(ureg)){
if(index != 0)
panic("fpslot index %d != 0 for user", index);
} else {
if(index == 0)
up->fpstate |= FPnouser;
up->fpstate |= FPkernel;
}
while(up->fpslot[index] == nil)
up->fpslot[index] = mallocalign(sizeof(FPsave), FPalign, 0, 0);
up->fpsave = up->fpslot[index];
up->fpstate = FPactive | (up->fpstate & (FPnouser|FPkernel|FPindexm));
break;
case FPinactive:
/*
* Before restoring the state, check for any pending
* exceptions, there's no way to restore the state without
* generating an unmasked exception.
* More attention should probably be paid here to the
* exception masks and error summary.
*/
status = up->fpsave->fsw;
control = up->fpsave->fcw;
if((status & ~control) & 0x07F){
mathnote(status, up->fpsave->rip);
break;
}
fprestore(up->fpsave);
up->fpstate = FPactive | (up->fpstate & (FPnouser|FPkernel|FPindexm));
break;
case FPactive:
panic("math emu pid %ld %s pc %#p",
up->pid, up->text, ureg->pc);
break;
}
}
/*
* math coprocessor segment overrun
*/
static void
mathover(Ureg*, void*)
{
pexit("math overrun", 0);
}
void
mathinit(void)
{
trapenable(VectorCERR, matherror, 0, "matherror");
if(m->cpuidfamily == 3)
intrenable(IrqIRQ13, matherror, 0, BUSUNKNOWN, "matherror");
trapenable(VectorCNA, mathemu, 0, "mathemu");
trapenable(VectorCSO, mathover, 0, "mathover");
trapenable(VectorSIMD, simderror, 0, "simderror");
}
void
procsetup(Proc *p)
{
p->fpstate = FPinit;
_stts();
/* clear debug registers */
memset(p->dr, 0, sizeof(p->dr));
if(m->dr7 != 0){
m->dr7 = 0;
putdr7(0);
}
cycles(&p->kentry);
p->pcycles = -p->kentry;
}
void
procfork(Proc *p)
{
int s;
p->kentry = up->kentry;
p->pcycles = -p->kentry;
/* save floating point state */
s = splhi();
switch(up->fpstate & ~FPillegal){
case FPactive | FPpush:
_clts();
case FPactive:
fpsave(up->fpsave);
up->fpstate = FPinactive | (up->fpstate & FPpush);
case FPactive | FPkernel:
case FPinactive | FPkernel:
case FPinactive | FPpush:
case FPinactive:
while(p->fpslot[0] == nil)
p->fpslot[0] = mallocalign(sizeof(FPsave), FPalign, 0, 0);
memmove(p->fpsave = p->fpslot[0], up->fpslot[0], sizeof(FPsave));
p->fpstate = FPinactive;
}
splx(s);
}
void
procrestore(Proc *p)
{
uvlong t;
if(p->dr[7] != 0){
m->dr7 = p->dr[7];
putdr(p->dr);
}
if(p->vmx != nil)
vmxprocrestore(p);
if(p->kp)
return;
cycles(&t);
p->kentry += t;
p->pcycles -= t;
}
void
procsave(Proc *p)
{
uvlong t;
cycles(&t);
p->kentry -= t;
p->pcycles += t;
if(m->dr7 != 0){
m->dr7 = 0;
putdr7(0);
}
if(p->state == Moribund)
p->dr[7] = 0;
switch(p->fpstate & ~(FPnouser|FPkernel|FPindexm)){
case FPactive | FPpush:
_clts();
case FPactive:
if(p->state == Moribund){
_fnclex();
_stts();
break;
}
/*
* Fpsave() stores without handling pending
* unmasked exeptions. Postnote() can't be called
* here as sleep() already has up->rlock, so
* the handling of pending exceptions is delayed
* until the process runs again and generates an
* emulation fault to activate the FPU.
*/
fpsave(p->fpsave);
p->fpstate = FPinactive | (p->fpstate & ~FPactive);
break;
}
/*
* While this processor is in the scheduler, the process could run
* on another processor and exit, returning the page tables to
* the free list where they could be reallocated and overwritten.
* When this processor eventually has to get an entry from the
* trashed page tables it will crash.
*
* If there's only one processor, this can't happen.
* You might think it would be a win not to do this in that case,
* especially on VMware, but it turns out not to matter.
*/
mmuflushtlb();
}
/*
* Fpusave and fpurestore lazily save and restore FPU state across
* system calls and the pagefault handler so that we can take
* advantage of SSE instructions such as AES-NI in the kernel.
*/
int
fpusave(void)
{
int ostate = up->fpstate;
if((ostate & ~(FPnouser|FPkernel|FPindexm)) == FPactive)
_stts();
up->fpstate = FPpush | (ostate & ~FPillegal);
return ostate;
}
void
fpurestore(int ostate)
{
int astate = up->fpstate;
if(astate == (FPpush | (ostate & ~FPillegal))){
if((ostate & ~(FPnouser|FPkernel|FPindexm)) == FPactive)
_clts();
} else {
if(astate == FPinit) /* don't restore on procexec()/procsetup() */
return;
if((astate & ~(FPnouser|FPkernel|FPindexm)) == FPactive)
_stts();
up->fpsave = up->fpslot[ostate>>FPindexs];
if(ostate & FPactive)
ostate = FPinactive | (ostate & ~FPactive);
}
up->fpstate = ostate;
}