ref: ad1924edab6c591647f30f0f3310c24f638c78c8
dir: /sys/src/games/opl3/opl3.c/
#include <u.h>
#include <libc.h>
typedef struct Op Op;
typedef struct Chan Chan;
#define Clk 14318180.0
#define FREQ_SH 16
#define EG_SH 16
#define LFO_SH 24
#define TIMER_SH 16
#define FREQ_MASK ((1 << FREQ_SH) - 1)
#define ENV_BITS 10
#define ENV_LEN (1 << ENV_BITS)
#define ENV_STEP (128.0 / ENV_LEN)
#define MAX_ATT_INDEX ((1 << ENV_BITS - 1) - 1)
#define MIN_ATT_INDEX 0
#define SIN_BITS 10
#define SIN_LEN (1 << SIN_BITS)
#define SIN_MASK (SIN_LEN - 1)
#define TL_RES_LEN 256
enum{
EG_OFF,
EG_REL,
EG_SUS,
EG_DEC,
EG_ATT,
};
struct Op
{
u32int ar; /* attack rate: AR<<2 */
u32int dr; /* decay rate: DR<<2 */
u32int rr; /* release rate:RR<<2 */
u8int KSR; /* key scale rate */
u8int ksl; /* keyscale level */
u8int ksr; /* key scale rate: kcode>>KSR */
u8int mul; /* multiple: mul_tab[ML] */
/* Phase Generator */
u32int Cnt; /* frequency counter */
u32int Incr; /* frequency counter step */
u8int FB; /* feedback shift value */
s32int *connect; /* slot output pointer */
s32int op1_out[2]; /* slot1 output for feedback */
u8int CON; /* connection (algorithm) type */
/* Envelope Generator */
u8int eg_type; /* percussive/non-percussive mode */
u8int state; /* phase type */
u32int TL; /* total level: TL << 2 */
s32int TLL; /* adjusted now TL */
s32int volume; /* envelope counter */
u32int sl; /* sustain level: sl_tab[SL] */
u32int eg_m_ar; /* (attack state) */
u8int eg_sh_ar; /* (attack state) */
u8int eg_sel_ar; /* (attack state) */
u32int eg_m_dr; /* (decay state) */
u8int eg_sh_dr; /* (decay state) */
u8int eg_sel_dr; /* (decay state) */
u32int eg_m_rr; /* (release state) */
u8int eg_sh_rr; /* (release state) */
u8int eg_sel_rr; /* (release state) */
u32int key;
u32int AMmask; /* LFO Amplitude Modulation enable mask */
u8int vib; /* LFO Phase Modulation enable flag (active high)*/
u8int waveform_number;
uint wavetable;
};
struct Chan
{
Op SLOT[2];
u32int block_fnum; /* block+fnum */
u32int fc; /* Freq. Increment base */
u32int ksl_base; /* KeyScaleLevel Base step */
u8int kcode; /* key code (for key scaling) */
u8int extended;
};
static Chan chs[18];
static u32int pan[18*4]; /* channels output masks (0xffffffff = enable); 4 masks per one channel */
static u32int pan_ctrl_value[18]; /* output control values 1 per one channel (1 value contains 4 masks) */
static int chanout[18];
static int phase_modulation, phase_modulation2; /* phase modulation input (SLOT 2 and 3/4) */
static u32int eg_cnt; /* global envelope generator counter */
static u32int eg_timer; /* global envelope generator counter works at frequency = chipclock/288 (288=8*36) */
static u32int eg_timer_add; /* step of eg_timer */
static u32int eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */
static u32int fn_tab[1024];
static u32int LFO_AM;
static s32int LFO_PM;
static u8int lfo_am_depth, lfo_pm_depth_range;
static u32int lfo_am_cnt, lfo_am_inc, lfo_pm_cnt, lfo_pm_inc;
static u32int noise_rng, noise_p, noise_f;
static int OPL3_mode, nts;
static u8int rhythm;
static int slot_array[32]=
{
0, 2, 4, 1, 3, 5,-1,-1,
6, 8,10, 7, 9,11,-1,-1,
12,14,16,13,15,17,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1
};
/* key scale level */
/* table is 3dB/octave , DV converts this into 6dB/octave */
/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */
#define DV (0.1875/2.0)
static u32int ksl_tab[8*16]=
{
/* OCT 0 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
/* OCT 1 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
/* OCT 2 */
0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
/* OCT 3 */
0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
/* OCT 4 */
0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
10.875/DV,11.250/DV,11.625/DV,12.000/DV,
/* OCT 5 */
0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
9.000/DV,10.125/DV,10.875/DV,11.625/DV,
12.000/DV,12.750/DV,13.125/DV,13.500/DV,
13.875/DV,14.250/DV,14.625/DV,15.000/DV,
/* OCT 6 */
0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
12.000/DV,13.125/DV,13.875/DV,14.625/DV,
15.000/DV,15.750/DV,16.125/DV,16.500/DV,
16.875/DV,17.250/DV,17.625/DV,18.000/DV,
/* OCT 7 */
0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
15.000/DV,16.125/DV,16.875/DV,17.625/DV,
18.000/DV,18.750/DV,19.125/DV,19.500/DV,
19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV
/* 0 / 3.0 / 1.5 / 6.0 dB/OCT */
static u32int ksl_shift[4] = { 31, 1, 2, 0 };
/* sustain level table (3dB per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (u32int) (db * (2.0/ENV_STEP))
static u32int sl_tab[16]={
SC(0),SC(1),SC(2),SC(3),SC(4),SC(5),SC(6),SC(7),
SC(8),SC(9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#define RATE_STEPS (8)
static uchar eg_inc[15*RATE_STEPS]={
/*cycle:0 1 2 3 4 5 6 7*/
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 for decay */
/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 for attack (zero time) */
/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
};
#define O(a) (a*RATE_STEPS)
/* note that there is no O(13) in this table - it's directly in the code */
static uchar eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
/* rates 00-12 */
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
O(0),O(1),O(2),O(3),
/* rate 13 */
O(4),O(5),O(6),O(7),
/* rate 14 */
O(8),O(9),O(10),O(11),
/* rate 15 */
O(12),O(12),O(12),O(12),
/* 16 dummy rates (same as 15 3) */
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
};
#undef O
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
#define O(a) (a*1)
static uchar eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
/* 16 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
/* rates 00-12 */
O(12),O(12),O(12),O(12),
O(11),O(11),O(11),O(11),
O(10),O(10),O(10),O(10),
O(9),O(9),O(9),O(9),
O(8),O(8),O(8),O(8),
O(7),O(7),O(7),O(7),
O(6),O(6),O(6),O(6),
O(5),O(5),O(5),O(5),
O(4),O(4),O(4),O(4),
O(3),O(3),O(3),O(3),
O(2),O(2),O(2),O(2),
O(1),O(1),O(1),O(1),
O(0),O(0),O(0),O(0),
/* rate 13 */
O(0),O(0),O(0),O(0),
/* rate 14 */
O(0),O(0),O(0),O(0),
/* rate 15 */
O(0),O(0),O(0),O(0),
/* 16 dummy rates (same as 15 3) */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
};
#undef O
/* multiple table */
#define ML 2
static u8int mul_tab[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */
ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML,
8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML
};
#undef ML
#define TL_TAB_LEN (13*2*TL_RES_LEN)
static int tl_tab[TL_TAB_LEN];
#define ENV_QUIET (TL_TAB_LEN>>4)
static uint sin_tab[SIN_LEN * 8];
#define LFO_AM_TAB_ELEMENTS 210
static u8int lfo_am_table[LFO_AM_TAB_ELEMENTS] = {
0,0,0,0,0,0,0,
1,1,1,1,
2,2,2,2,
3,3,3,3,
4,4,4,4,
5,5,5,5,
6,6,6,6,
7,7,7,7,
8,8,8,8,
9,9,9,9,
10,10,10,10,
11,11,11,11,
12,12,12,12,
13,13,13,13,
14,14,14,14,
15,15,15,15,
16,16,16,16,
17,17,17,17,
18,18,18,18,
19,19,19,19,
20,20,20,20,
21,21,21,21,
22,22,22,22,
23,23,23,23,
24,24,24,24,
25,25,25,25,
26,26,26,
25,25,25,25,
24,24,24,24,
23,23,23,23,
22,22,22,22,
21,21,21,21,
20,20,20,20,
19,19,19,19,
18,18,18,18,
17,17,17,17,
16,16,16,16,
15,15,15,15,
14,14,14,14,
13,13,13,13,
12,12,12,12,
11,11,11,11,
10,10,10,10,
9,9,9,9,
8,8,8,8,
7,7,7,7,
6,6,6,6,
5,5,5,5,
4,4,4,4,
3,3,3,3,
2,2,2,2,
1,1,1,1
};
/* LFO Phase Modulation table (verified on real YM3812) */
static s8int lfo_pm_table[8*8*2] = {
/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */
0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */
1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */
2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/
5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/
/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */
3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/
7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/
};
#define SLOT7_1 (&chs[7].SLOT[0])
#define SLOT7_2 (&chs[7].SLOT[1])
#define SLOT8_1 (&chs[8].SLOT[0])
#define SLOT8_2 (&chs[8].SLOT[1])
static void
advance_lfo(void)
{
u8int tmp;
lfo_am_cnt += lfo_am_inc;
if(lfo_am_cnt >= ((u32int)LFO_AM_TAB_ELEMENTS<<LFO_SH))
lfo_am_cnt -= ((u32int)LFO_AM_TAB_ELEMENTS<<LFO_SH);
tmp = lfo_am_table[lfo_am_cnt >> LFO_SH];
if(lfo_am_depth)
LFO_AM = tmp;
else
LFO_AM = tmp>>2;
lfo_pm_cnt += lfo_pm_inc;
LFO_PM = (lfo_pm_cnt>>LFO_SH & 7) | lfo_pm_depth_range;
}
static void
advance(void)
{
Chan *CH;
Op *op;
int i;
eg_timer += eg_timer_add;
while (eg_timer >= eg_timer_overflow){
eg_timer -= eg_timer_overflow;
eg_cnt++;
for (i=0; i<9*2*2; i++){
CH = &chs[i/2];
op = &CH->SLOT[i&1];
switch(op->state){
case EG_ATT:
if(!(eg_cnt & op->eg_m_ar)){
op->volume += (s32int)(~op->volume *
(eg_inc[op->eg_sel_ar + ((eg_cnt>>op->eg_sh_ar)&7)])
) >>3;
if(op->volume <= MIN_ATT_INDEX){
op->volume = MIN_ATT_INDEX;
op->state = EG_DEC;
}
}
break;
case EG_DEC:
if(!(eg_cnt & op->eg_m_dr)){
op->volume += eg_inc[op->eg_sel_dr + ((eg_cnt>>op->eg_sh_dr)&7)];
if(op->volume >= op->sl)
op->state = EG_SUS;
}
break;
case EG_SUS:
if(op->eg_type)
{
}else{
if(!(eg_cnt & op->eg_m_rr)){
op->volume += eg_inc[op->eg_sel_rr + ((eg_cnt>>op->eg_sh_rr)&7)];
if(op->volume >= MAX_ATT_INDEX)
op->volume = MAX_ATT_INDEX;
}
}
break;
case EG_REL:
if(!(eg_cnt & op->eg_m_rr)){
op->volume += eg_inc[op->eg_sel_rr + ((eg_cnt>>op->eg_sh_rr)&7)];
if(op->volume >= MAX_ATT_INDEX){
op->volume = MAX_ATT_INDEX;
op->state = EG_OFF;
}
}
break;
}
}
}
for (i=0; i<9*2*2; i++){
CH = &chs[i/2];
op = &CH->SLOT[i&1];
if(op->vib){
u8int block;
uint block_fnum = CH->block_fnum;
uint fnum_lfo = (block_fnum&0x0380) >> 7;
int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo];
if(lfo_fn_table_index_offset){
block_fnum += lfo_fn_table_index_offset;
block = (block_fnum&0x1c00) >> 10;
op->Cnt += (fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
}else
op->Cnt += op->Incr;
}else
op->Cnt += op->Incr;
}
noise_p += noise_f;
i = noise_p >> FREQ_SH;
noise_p &= FREQ_MASK;
while (i){
if(noise_rng & 1) noise_rng ^= 0x800302;
noise_rng >>= 1;
i--;
}
}
static int
op_calc(u32int phase, uint env, int pm, uint wave_tab)
{
u32int p;
p = (env<<4) + sin_tab[wave_tab + ((((int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH) & SIN_MASK)];
if(p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
static int
op_calc1(u32int phase, uint env, int pm, uint wave_tab)
{
u32int p;
p = (env<<4) + sin_tab[wave_tab + ((((int)((phase & ~FREQ_MASK) + pm))>>FREQ_SH) & SIN_MASK)];
if(p >= TL_TAB_LEN)
return 0;
return tl_tab[p];
}
#define volume_calc(OP) ((OP)->TLL + ((u32int)(OP)->volume) + (LFO_AM & (OP)->AMmask))
static void
chan_calc(Chan *CH)
{
Op *SLOT;
uint env;
int out;
phase_modulation = 0;
phase_modulation2= 0;
SLOT = &CH->SLOT[0];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
SLOT->op1_out[1] = 0;
if(env < ENV_QUIET){
if(!SLOT->FB)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable);
}
*SLOT->connect += SLOT->op1_out[1];
SLOT++;
env = volume_calc(SLOT);
if(env < ENV_QUIET)
*SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable);
}
static void
chan_calc_ext(Chan *CH)
{
Op *SLOT;
uint env;
phase_modulation = 0;
SLOT = &CH->SLOT[0];
env = volume_calc(SLOT);
if(env < ENV_QUIET)
*SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation2, SLOT->wavetable);
SLOT++;
env = volume_calc(SLOT);
if(env < ENV_QUIET)
*SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable);
}
static void
chan_calc_rhythm(Chan *CH, uint noise)
{
Op *SLOT;
int out;
uint env;
phase_modulation = 0;
SLOT = &CH[6].SLOT[0];
env = volume_calc(SLOT);
out = SLOT->op1_out[0] + SLOT->op1_out[1];
SLOT->op1_out[0] = SLOT->op1_out[1];
if(!SLOT->CON)
phase_modulation = SLOT->op1_out[0];
SLOT->op1_out[1] = 0;
if(env < ENV_QUIET){
if(!SLOT->FB)
out = 0;
SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable);
}
SLOT++;
env = volume_calc(SLOT);
if(env < ENV_QUIET)
chanout[6] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2;
env = volume_calc(SLOT7_1);
if(env < ENV_QUIET){
uchar bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
uchar bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
uchar bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
uchar res1 = (bit2 ^ bit7) | bit3;
u32int phase = res1 ? (0x200|(0xd0>>2)) : 0xd0;
uchar bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
uchar bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
uchar res2 = (bit3e ^ bit5e);
if(res2)
phase = (0x200|(0xd0>>2));
if(phase&0x200){
if(noise)
phase = 0x200|0xd0;
}else
{
if(noise)
phase = 0xd0>>2;
}
chanout[7] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
}
env = volume_calc(SLOT7_2);
if(env < ENV_QUIET){
uchar bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1;
u32int phase = bit8 ? 0x200 : 0x100;
if(noise)
phase ^= 0x100;
chanout[7] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
}
env = volume_calc(SLOT8_1);
if(env < ENV_QUIET)
chanout[8] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2;
env = volume_calc(SLOT8_2);
if(env < ENV_QUIET){
uchar bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1;
uchar bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1;
uchar bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1;
uchar res1 = (bit2 ^ bit7) | bit3;
u32int phase = res1 ? 0x300 : 0x100;
uchar bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1;
uchar bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1;
uchar res2 = (bit3e ^ bit5e);
if(res2)
phase = 0x300;
chanout[8] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
}
}
static void
FM_KEYON(Op *SLOT, u32int key_set)
{
if(!SLOT->key){
SLOT->Cnt = 0;
SLOT->state = EG_ATT;
}
SLOT->key |= key_set;
}
static void
FM_KEYOFF(Op *SLOT, u32int key_clr)
{
if(SLOT->key){
SLOT->key &= key_clr;
if(!SLOT->key){
if(SLOT->state>EG_REL)
SLOT->state = EG_REL;
}
}
}
/* update phase increment counter of operator (also update the EG rates if necessary) */
static void
CALC_FCSLOT(Chan *CH, Op *SLOT)
{
int ksr;
SLOT->Incr = CH->fc * SLOT->mul;
ksr = CH->kcode >> SLOT->KSR;
if(SLOT->ksr != ksr){
SLOT->ksr = ksr;
if((SLOT->ar + SLOT->ksr) < 16+60){
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr];
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr];
}else{
SLOT->eg_sh_ar = 0;
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr];
SLOT->eg_m_dr = (1<<SLOT->eg_sh_dr)-1;
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr];
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
SLOT->eg_m_rr = (1<<SLOT->eg_sh_rr)-1;
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
}
}
static void
set_mul(int slot, int v)
{
Chan *CH = &chs[slot/2];
Op *SLOT = &CH->SLOT[slot&1];
SLOT->mul = mul_tab[v&0x0f];
SLOT->KSR = (v&0x10) ? 0 : 2;
SLOT->eg_type = (v&0x20);
SLOT->vib = (v&0x40);
SLOT->AMmask = (v&0x80) ? ~0 : 0;
if(OPL3_mode & 1){
int chan_no = slot/2;
switch(chan_no){
case 0: case 1: case 2: case 9: case 10: case 11:
CALC_FCSLOT(CH,SLOT);
break;
case 3: case 4: case 5: case 12: case 13: case 14:
if((CH-3)->extended)
CALC_FCSLOT(CH-3,SLOT);
else
CALC_FCSLOT(CH,SLOT);
break;
default:
CALC_FCSLOT(CH,SLOT);
break;
}
}else{
CALC_FCSLOT(CH,SLOT);
}
}
static void
set_ksl_tl(int slot, int v)
{
Chan *CH = &chs[slot/2];
Op *SLOT = &CH->SLOT[slot&1];
SLOT->ksl = ksl_shift[v >> 6];
SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */
if(OPL3_mode & 1){
int chan_no = slot/2;
switch(chan_no){
case 0: case 1: case 2: case 9: case 10: case 11:
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
break;
case 3: case 4: case 5: case 12: case 13: case 14:
if((CH-3)->extended)
SLOT->TLL = SLOT->TL + ((CH-3)->ksl_base>>SLOT->ksl);
else
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
break;
default:
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
break;
}
}else
SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}
static void
set_ar_dr(int slot, int v)
{
Chan *CH = &chs[slot/2];
Op *SLOT = &CH->SLOT[slot&1];
SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0;
if((SLOT->ar + SLOT->ksr) < 16+60){
SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr];
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr];
}else{
SLOT->eg_sh_ar = 0;
SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1;
SLOT->eg_sel_ar = 13*RATE_STEPS;
}
SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr];
SLOT->eg_m_dr = (1<<SLOT->eg_sh_dr)-1;
SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr];
}
static void
set_sl_rr(int slot, int v)
{
Chan *CH = &chs[slot/2];
Op *SLOT = &CH->SLOT[slot&1];
SLOT->sl = sl_tab[v>>4];
SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0;
SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
SLOT->eg_m_rr = (1<<SLOT->eg_sh_rr)-1;
SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
}
void
opl3wr(int r, int v)
{
Chan *CH;
uint ch_offset = 0;
int slot;
int block_fnum;
v &= 0xff;
if(r&0x100){
switch(r){
case 0x101:
return;
case 0x104:
CH = &chs[0];
CH->extended = (v>>0) & 1;
CH++;
CH->extended = (v>>1) & 1;
CH++;
CH->extended = (v>>2) & 1;
CH = &chs[9];
CH->extended = (v>>3) & 1;
CH++;
CH->extended = (v>>4) & 1;
CH++;
CH->extended = (v>>5) & 1;
return;
case 0x105:
OPL3_mode = v & 1;
return;
}
ch_offset = 9;
}
r &= 0xff;
v &= 0xff;
switch(r&0xe0){
case 0x00:
switch(r&0x1f){
case 0x08:
nts = v;
break;
}
break;
case 0x20:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_mul(slot + ch_offset*2, v);
break;
case 0x40:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_ksl_tl(slot + ch_offset*2, v);
break;
case 0x60:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_ar_dr(slot + ch_offset*2, v);
break;
case 0x80:
slot = slot_array[r&0x1f];
if(slot < 0) return;
set_sl_rr(slot + ch_offset*2, v);
break;
case 0xa0:
if(r == 0xbd){
if(ch_offset != 0)
return;
lfo_am_depth = v & 0x80;
lfo_pm_depth_range = (v&0x40) ? 8 : 0;
rhythm = v & 0x3f;
if(rhythm & 0x20){
if(v&0x10){
FM_KEYON (&chs[6].SLOT[0], 2);
FM_KEYON (&chs[6].SLOT[1], 2);
}else{
FM_KEYOFF(&chs[6].SLOT[0],~2);
FM_KEYOFF(&chs[6].SLOT[1],~2);
}
if(v&0x01) FM_KEYON (&chs[7].SLOT[0], 2);
else FM_KEYOFF(&chs[7].SLOT[0],~2);
if(v&0x08) FM_KEYON (&chs[7].SLOT[1], 2);
else FM_KEYOFF(&chs[7].SLOT[1],~2);
if(v&0x04) FM_KEYON (&chs[8].SLOT[0], 2);
else FM_KEYOFF(&chs[8].SLOT[0],~2);
if(v&0x02) FM_KEYON (&chs[8].SLOT[1], 2);
else FM_KEYOFF(&chs[8].SLOT[1],~2);
}else{
FM_KEYOFF(&chs[6].SLOT[0],~2);
FM_KEYOFF(&chs[6].SLOT[1],~2);
FM_KEYOFF(&chs[7].SLOT[0],~2);
FM_KEYOFF(&chs[7].SLOT[1],~2);
FM_KEYOFF(&chs[8].SLOT[0],~2);
FM_KEYOFF(&chs[8].SLOT[1],~2);
}
return;
}
if((r&0x0f) > 8) return;
CH = &chs[(r&0x0f) + ch_offset];
if(!(r&0x10)){
block_fnum = (CH->block_fnum&0x1f00) | v;
}else{
block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
if(OPL3_mode & 1){
int chan_no = (r&0x0f) + ch_offset;
switch(chan_no){
case 0: case 1: case 2: case 9: case 10: case 11:
if(CH->extended){
if(v&0x20){
FM_KEYON (&CH->SLOT[0], 1);
FM_KEYON (&CH->SLOT[1], 1);
FM_KEYON (&(CH+3)->SLOT[0], 1);
FM_KEYON (&(CH+3)->SLOT[1], 1);
}else{
FM_KEYOFF(&CH->SLOT[0],~1);
FM_KEYOFF(&CH->SLOT[1],~1);
FM_KEYOFF(&(CH+3)->SLOT[0],~1);
FM_KEYOFF(&(CH+3)->SLOT[1],~1);
}
}else{
if(v&0x20){
FM_KEYON (&CH->SLOT[0], 1);
FM_KEYON (&CH->SLOT[1], 1);
}else{
FM_KEYOFF(&CH->SLOT[0],~1);
FM_KEYOFF(&CH->SLOT[1],~1);
}
}
break;
case 3: case 4: case 5: case 12: case 13: case 14:
if((CH-3)->extended){
}else{
if(v&0x20){
FM_KEYON (&CH->SLOT[0], 1);
FM_KEYON (&CH->SLOT[1], 1);
}else{
FM_KEYOFF(&CH->SLOT[0],~1);
FM_KEYOFF(&CH->SLOT[1],~1);
}
}
break;
default:
if(v&0x20){
FM_KEYON (&CH->SLOT[0], 1);
FM_KEYON (&CH->SLOT[1], 1);
}else{
FM_KEYOFF(&CH->SLOT[0],~1);
FM_KEYOFF(&CH->SLOT[1],~1);
}
break;
}
}else{
if(v&0x20){
FM_KEYON (&CH->SLOT[0], 1);
FM_KEYON (&CH->SLOT[1], 1);
}else{
FM_KEYOFF(&CH->SLOT[0],~1);
FM_KEYOFF(&CH->SLOT[1],~1);
}
}
}
if(CH->block_fnum != block_fnum){
u8int block = block_fnum >> 10;
CH->block_fnum = block_fnum;
CH->ksl_base = ksl_tab[block_fnum>>6];
CH->fc = fn_tab[block_fnum&0x03ff] >> (7-block);
CH->kcode = (CH->block_fnum&0x1c00)>>9;
if(nts&0x40)
CH->kcode |= (CH->block_fnum&0x100)>>8;
else
CH->kcode |= (CH->block_fnum&0x200)>>9;
if(OPL3_mode & 1){
int chan_no = (r&0x0f) + ch_offset;
switch(chan_no){
case 0: case 1: case 2: case 9: case 10: case 11:
if(CH->extended){
CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl);
CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl);
(CH+3)->SLOT[0].TLL = (CH+3)->SLOT[0].TL + (CH->ksl_base>>(CH+3)->SLOT[0].ksl);
(CH+3)->SLOT[1].TLL = (CH+3)->SLOT[1].TL + (CH->ksl_base>>(CH+3)->SLOT[1].ksl);
CALC_FCSLOT(CH,&CH->SLOT[0]);
CALC_FCSLOT(CH,&CH->SLOT[1]);
CALC_FCSLOT(CH,&(CH+3)->SLOT[0]);
CALC_FCSLOT(CH,&(CH+3)->SLOT[1]);
}else{
CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl);
CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl);
CALC_FCSLOT(CH,&CH->SLOT[0]);
CALC_FCSLOT(CH,&CH->SLOT[1]);
}
break;
case 3: case 4: case 5: case 12: case 13: case 14:
if((CH-3)->extended){
}else{
CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl);
CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl);
CALC_FCSLOT(CH,&CH->SLOT[0]);
CALC_FCSLOT(CH,&CH->SLOT[1]);
}
break;
default:
CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl);
CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl);
CALC_FCSLOT(CH,&CH->SLOT[0]);
CALC_FCSLOT(CH,&CH->SLOT[1]);
break;
}
}else{
CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl);
CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl);
CALC_FCSLOT(CH,&CH->SLOT[0]);
CALC_FCSLOT(CH,&CH->SLOT[1]);
}
}
break;
case 0xc0:
if((r&0xf) > 8) return;
CH = &chs[(r&0xf) + ch_offset];
if(OPL3_mode & 1){
int base = ((r&0xf) + ch_offset) * 4;
pan[base] = (v & 0x10) ? ~0 : 0;
pan[base +1] = (v & 0x20) ? ~0 : 0;
pan[base +2] = (v & 0x40) ? ~0 : 0;
pan[base +3] = (v & 0x80) ? ~0 : 0;
}else{
int base = ((r&0xf) + ch_offset) * 4;
pan[base] = ~0;
pan[base +1] = ~0;
pan[base +2] = ~0;
pan[base +3] = ~0;
}
pan_ctrl_value[(r&0xf) + ch_offset] = v;
CH->SLOT[0].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0;
CH->SLOT[0].CON = v&1;
if(OPL3_mode & 1){
int chan_no = (r&0x0f) + ch_offset;
switch(chan_no){
case 0: case 1: case 2: case 9: case 10: case 11:
if(CH->extended){
u8int conn = (CH->SLOT[0].CON<<1) | ((CH+3)->SLOT[0].CON<<0);
switch(conn){
case 0:
CH->SLOT[0].connect = &phase_modulation;
CH->SLOT[1].connect = &phase_modulation2;
(CH+3)->SLOT[0].connect = &phase_modulation;
(CH+3)->SLOT[1].connect = &chanout[chan_no + 3];
break;
case 1:
CH->SLOT[0].connect = &phase_modulation;
CH->SLOT[1].connect = &chanout[chan_no];
(CH+3)->SLOT[0].connect = &phase_modulation;
(CH+3)->SLOT[1].connect = &chanout[chan_no + 3];
break;
case 2:
CH->SLOT[0].connect = &chanout[chan_no];
CH->SLOT[1].connect = &phase_modulation2;
(CH+3)->SLOT[0].connect = &phase_modulation;
(CH+3)->SLOT[1].connect = &chanout[chan_no + 3];
break;
case 3:
CH->SLOT[0].connect = &chanout[chan_no];
CH->SLOT[1].connect = &phase_modulation2;
(CH+3)->SLOT[0].connect = &chanout[chan_no + 3];
(CH+3)->SLOT[1].connect = &chanout[chan_no + 3];
break;
}
}else{
CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation;
CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset];
}
break;
case 3: case 4: case 5: case 12: case 13: case 14:
if((CH-3)->extended){
u8int conn = ((CH-3)->SLOT[0].CON<<1) | (CH->SLOT[0].CON<<0);
switch(conn){
case 0:
(CH-3)->SLOT[0].connect = &phase_modulation;
(CH-3)->SLOT[1].connect = &phase_modulation2;
CH->SLOT[0].connect = &phase_modulation;
CH->SLOT[1].connect = &chanout[chan_no];
break;
case 1:
(CH-3)->SLOT[0].connect = &phase_modulation;
(CH-3)->SLOT[1].connect = &chanout[chan_no - 3];
CH->SLOT[0].connect = &phase_modulation;
CH->SLOT[1].connect = &chanout[chan_no];
break;
case 2:
(CH-3)->SLOT[0].connect = &chanout[chan_no - 3];
(CH-3)->SLOT[1].connect = &phase_modulation2;
CH->SLOT[0].connect = &phase_modulation;
CH->SLOT[1].connect = &chanout[chan_no];
break;
case 3:
(CH-3)->SLOT[0].connect = &chanout[chan_no - 3];
(CH-3)->SLOT[1].connect = &phase_modulation2;
CH->SLOT[0].connect = &chanout[chan_no];
CH->SLOT[1].connect = &chanout[chan_no];
break;
}
}else{
CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation;
CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset];
}
break;
default:
CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation;
CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset];
break;
}
}else{
CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation;
CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset];
}
break;
case 0xe0:
slot = slot_array[r&0x1f];
if(slot < 0) return;
slot += ch_offset*2;
CH = &chs[slot/2];
v &= 7;
CH->SLOT[slot&1].waveform_number = v;
if(!(OPL3_mode & 1))
v &= 3;
CH->SLOT[slot&1].wavetable = v * SIN_LEN;
break;
}
}
void
opl3out(uchar *p, int n)
{
uchar *e;
for(e=p+n; p<e; p+=4){
int a,b;
advance_lfo();
memset(chanout, 0, sizeof(chanout));
chan_calc(&chs[0]);
if(chs[0].extended)
chan_calc_ext(&chs[3]);
else
chan_calc(&chs[3]);
chan_calc(&chs[1]);
if(chs[1].extended)
chan_calc_ext(&chs[4]);
else
chan_calc(&chs[4]);
chan_calc(&chs[2]);
if(chs[2].extended)
chan_calc_ext(&chs[5]);
else
chan_calc(&chs[5]);
if((rhythm & 0x20) == 0){
chan_calc(&chs[6]);
chan_calc(&chs[7]);
chan_calc(&chs[8]);
}else
chan_calc_rhythm(&chs[0], (noise_rng>>0)&1);
chan_calc(&chs[9]);
if(chs[9].extended)
chan_calc_ext(&chs[12]);
else
chan_calc(&chs[12]);
chan_calc(&chs[10]);
if(chs[10].extended)
chan_calc_ext(&chs[13]);
else
chan_calc(&chs[13]);
chan_calc(&chs[11]);
if(chs[11].extended)
chan_calc_ext(&chs[14]);
else
chan_calc(&chs[14]);
chan_calc(&chs[15]);
chan_calc(&chs[16]);
chan_calc(&chs[17]);
a = chanout[0] & pan[0];
b = chanout[0] & pan[1];
a += chanout[1] & pan[4];
b += chanout[1] & pan[5];
a += chanout[2] & pan[8];
b += chanout[2] & pan[9];
a += chanout[3] & pan[12];
b += chanout[3] & pan[13];
a += chanout[4] & pan[16];
b += chanout[4] & pan[17];
a += chanout[5] & pan[20];
b += chanout[5] & pan[21];
a += chanout[6] & pan[24];
b += chanout[6] & pan[25];
a += chanout[7] & pan[28];
b += chanout[7] & pan[29];
a += chanout[8] & pan[32];
b += chanout[8] & pan[33];
a += chanout[9] & pan[36];
b += chanout[9] & pan[37];
a += chanout[10] & pan[40];
b += chanout[10] & pan[41];
a += chanout[11] & pan[44];
b += chanout[11] & pan[45];
a += chanout[12] & pan[48];
b += chanout[12] & pan[49];
a += chanout[13] & pan[52];
b += chanout[13] & pan[53];
a += chanout[14] & pan[56];
b += chanout[14] & pan[57];
a += chanout[15] & pan[60];
b += chanout[15] & pan[61];
a += chanout[16] & pan[64];
b += chanout[16] & pan[65];
a += chanout[17] & pan[68];
b += chanout[17] & pan[69];
if(a > 32767)
a = 32767;
else if(a < -32768)
a = -32768;
if(b > 32767)
b = 32767;
else if(b < -32768)
b = -32768;
p[0] = a;
p[1] = a >> 8;
p[2] = b;
p[3] = b >> 8;
advance();
}
}
static int
init_tables(void)
{
int i, x, n;
double o, m;
for (x=0; x<TL_RES_LEN; x++){
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
m = floor(m);
n = (int)m;
n >>= 4;
if(n&1)
n = (n>>1)+1;
else
n = n>>1;
n <<= 1;
tl_tab[x*2 + 0] = n;
tl_tab[x*2 + 1] = ~tl_tab[x*2 + 0];
for (i=1; i<13; i++){
tl_tab[x*2+0 + i*2*TL_RES_LEN] = tl_tab[x*2+0]>>i;
tl_tab[x*2+1 + i*2*TL_RES_LEN] = ~tl_tab[x*2+0 + i*2*TL_RES_LEN];
}
}
for (i=0; i<SIN_LEN; i++){
m = sin(((i*2)+1) * PI / SIN_LEN);
if(m>0.0)
o = 8*log(1.0/m)/log(2.0);
else
o = 8*log(-1.0/m)/log(2.0);
o = o / (ENV_STEP/4);
n = (int)(2.0*o);
if(n&1)
n = (n>>1)+1;
else
n = n>>1;
sin_tab[i] = n*2 + (m>=0.0? 0: 1);
}
for (i=0; i<SIN_LEN; i++){
if(i & (1<<(SIN_BITS-1)))
sin_tab[1*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[1*SIN_LEN+i] = sin_tab[i];
sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1)];
if(i & (1<<(SIN_BITS-2)))
sin_tab[3*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)];
if(i & (1<<(SIN_BITS-1)))
sin_tab[4*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[4*SIN_LEN+i] = sin_tab[i*2];
if(i & (1<<(SIN_BITS-1)))
sin_tab[5*SIN_LEN+i] = TL_TAB_LEN;
else
sin_tab[5*SIN_LEN+i] = sin_tab[(i*2) & (SIN_MASK>>1)];
if(i & (1<<(SIN_BITS-1)))
sin_tab[6*SIN_LEN+i] = 1;
else
sin_tab[6*SIN_LEN+i] = 0;
if(i & (1<<(SIN_BITS-1)))
x = ((SIN_LEN-1)-i)*16 + 1;
else
x = i*16;
if(x > TL_TAB_LEN)
x = TL_TAB_LEN;
sin_tab[7*SIN_LEN+i] = x;
}
return 1;
}
void
opl3init(int rate)
{
int i, o;
double f0;
init_tables();
f0 = (Clk / (8.0*36)) / rate;
for(i=0 ; i < 1024 ; i++)
fn_tab[i] = (u32int)((double)i * 64 * f0 * (1<<(FREQ_SH-10)));
lfo_am_inc = (1.0 / 64.0) * (1<<LFO_SH) * f0;
lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * f0;
noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * f0;
eg_timer_add = (1<<EG_SH) * f0;
eg_timer_overflow = (1) * (1<<EG_SH);
noise_rng = 1;
for(i=0xff; i>=0x20; i--)
opl3wr(i, 0);
for(i=0x1ff; i>=0x120; i--)
opl3wr(i, 0);
for(i=0; i<9*2; i++){
Chan *CH = &chs[i];
for(o=0; o<2; o++){
CH->SLOT[o].state = EG_OFF;
CH->SLOT[o].volume = MAX_ATT_INDEX;
}
}
}