ref: ebb16275cc0193d2caa3985f3914c08bc0e24e5f
dir: /libsec/sha2block128.c/
/* * sha2_512 block cipher - unrolled version * * note: the following upper and lower case macro names are distinct * and reflect the functions defined in FIPS pub. 180-2. */ #include "os.h" #define ROTR(x,n) (((x) >> (n)) | ((x) << (64-(n)))) #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x) >> 7)) #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x) >> 6)) #define SIGMA0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39)) #define SIGMA1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41)) #define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) #define Maj(x,y,z) (((x) | (y)) & ((z) | ((x) & (y)))) /* * first 64 bits of the fractional parts of cube roots of * first 80 primes (2..311). */ static u64int K512[80] = { 0x428a2f98d728ae22LL, 0x7137449123ef65cdLL, 0xb5c0fbcfec4d3b2fLL, 0xe9b5dba58189dbbcLL, 0x3956c25bf348b538LL, 0x59f111f1b605d019LL, 0x923f82a4af194f9bLL, 0xab1c5ed5da6d8118LL, 0xd807aa98a3030242LL, 0x12835b0145706fbeLL, 0x243185be4ee4b28cLL, 0x550c7dc3d5ffb4e2LL, 0x72be5d74f27b896fLL, 0x80deb1fe3b1696b1LL, 0x9bdc06a725c71235LL, 0xc19bf174cf692694LL, 0xe49b69c19ef14ad2LL, 0xefbe4786384f25e3LL, 0x0fc19dc68b8cd5b5LL, 0x240ca1cc77ac9c65LL, 0x2de92c6f592b0275LL, 0x4a7484aa6ea6e483LL, 0x5cb0a9dcbd41fbd4LL, 0x76f988da831153b5LL, 0x983e5152ee66dfabLL, 0xa831c66d2db43210LL, 0xb00327c898fb213fLL, 0xbf597fc7beef0ee4LL, 0xc6e00bf33da88fc2LL, 0xd5a79147930aa725LL, 0x06ca6351e003826fLL, 0x142929670a0e6e70LL, 0x27b70a8546d22ffcLL, 0x2e1b21385c26c926LL, 0x4d2c6dfc5ac42aedLL, 0x53380d139d95b3dfLL, 0x650a73548baf63deLL, 0x766a0abb3c77b2a8LL, 0x81c2c92e47edaee6LL, 0x92722c851482353bLL, 0xa2bfe8a14cf10364LL, 0xa81a664bbc423001LL, 0xc24b8b70d0f89791LL, 0xc76c51a30654be30LL, 0xd192e819d6ef5218LL, 0xd69906245565a910LL, 0xf40e35855771202aLL, 0x106aa07032bbd1b8LL, 0x19a4c116b8d2d0c8LL, 0x1e376c085141ab53LL, 0x2748774cdf8eeb99LL, 0x34b0bcb5e19b48a8LL, 0x391c0cb3c5c95a63LL, 0x4ed8aa4ae3418acbLL, 0x5b9cca4f7763e373LL, 0x682e6ff3d6b2b8a3LL, 0x748f82ee5defb2fcLL, 0x78a5636f43172f60LL, 0x84c87814a1f0ab72LL, 0x8cc702081a6439ecLL, 0x90befffa23631e28LL, 0xa4506cebde82bde9LL, 0xbef9a3f7b2c67915LL, 0xc67178f2e372532bLL, 0xca273eceea26619cLL, 0xd186b8c721c0c207LL, 0xeada7dd6cde0eb1eLL, 0xf57d4f7fee6ed178LL, 0x06f067aa72176fbaLL, 0x0a637dc5a2c898a6LL, 0x113f9804bef90daeLL, 0x1b710b35131c471bLL, 0x28db77f523047d84LL, 0x32caab7b40c72493LL, 0x3c9ebe0a15c9bebcLL, 0x431d67c49c100d4cLL, 0x4cc5d4becb3e42b6LL, 0x597f299cfc657e2aLL, 0x5fcb6fab3ad6faecLL, 0x6c44198c4a475817LL }; void _sha2block128(uchar *p, ulong len, u64int *s) { u64int w[16], a, b, c, d, e, f, g, h; uchar *end; /* at this point, we have a multiple of 64 bytes */ for(end = p+len; p < end;){ a = s[0]; b = s[1]; c = s[2]; d = s[3]; e = s[4]; f = s[5]; g = s[6]; h = s[7]; #define STEP(a,b,c,d,e,f,g,h,i) \ if(i < 16) { \ w[i] = (u64int)(p[0]<<24 | p[1]<<16 | p[2]<<8 | p[3])<<32 | \ (p[4]<<24 | p[5]<<16 | p[6]<<8 | p[7]); \ p += 8; \ } else { \ u64int s0, s1; \ s1 = sigma1(w[(i-2)&15]); \ s0 = sigma0(w[(i-15)&15]); \ w[i&15] += s1 + w[(i-7)&15] + s0; \ } \ h += SIGMA1(e) + Ch(e,f,g) + K512[i] + w[i&15]; \ d += h; \ h += SIGMA0(a) + Maj(a,b,c); STEP(a,b,c,d,e,f,g,h,0); STEP(h,a,b,c,d,e,f,g,1); STEP(g,h,a,b,c,d,e,f,2); STEP(f,g,h,a,b,c,d,e,3); STEP(e,f,g,h,a,b,c,d,4); STEP(d,e,f,g,h,a,b,c,5); STEP(c,d,e,f,g,h,a,b,6); STEP(b,c,d,e,f,g,h,a,7); STEP(a,b,c,d,e,f,g,h,8); STEP(h,a,b,c,d,e,f,g,9); STEP(g,h,a,b,c,d,e,f,10); STEP(f,g,h,a,b,c,d,e,11); STEP(e,f,g,h,a,b,c,d,12); STEP(d,e,f,g,h,a,b,c,13); STEP(c,d,e,f,g,h,a,b,14); STEP(b,c,d,e,f,g,h,a,15); STEP(a,b,c,d,e,f,g,h,16); STEP(h,a,b,c,d,e,f,g,17); STEP(g,h,a,b,c,d,e,f,18); STEP(f,g,h,a,b,c,d,e,19); STEP(e,f,g,h,a,b,c,d,20); STEP(d,e,f,g,h,a,b,c,21); STEP(c,d,e,f,g,h,a,b,22); STEP(b,c,d,e,f,g,h,a,23); STEP(a,b,c,d,e,f,g,h,24); STEP(h,a,b,c,d,e,f,g,25); STEP(g,h,a,b,c,d,e,f,26); STEP(f,g,h,a,b,c,d,e,27); STEP(e,f,g,h,a,b,c,d,28); STEP(d,e,f,g,h,a,b,c,29); STEP(c,d,e,f,g,h,a,b,30); STEP(b,c,d,e,f,g,h,a,31); STEP(a,b,c,d,e,f,g,h,32); STEP(h,a,b,c,d,e,f,g,33); STEP(g,h,a,b,c,d,e,f,34); STEP(f,g,h,a,b,c,d,e,35); STEP(e,f,g,h,a,b,c,d,36); STEP(d,e,f,g,h,a,b,c,37); STEP(c,d,e,f,g,h,a,b,38); STEP(b,c,d,e,f,g,h,a,39); STEP(a,b,c,d,e,f,g,h,40); STEP(h,a,b,c,d,e,f,g,41); STEP(g,h,a,b,c,d,e,f,42); STEP(f,g,h,a,b,c,d,e,43); STEP(e,f,g,h,a,b,c,d,44); STEP(d,e,f,g,h,a,b,c,45); STEP(c,d,e,f,g,h,a,b,46); STEP(b,c,d,e,f,g,h,a,47); STEP(a,b,c,d,e,f,g,h,48); STEP(h,a,b,c,d,e,f,g,49); STEP(g,h,a,b,c,d,e,f,50); STEP(f,g,h,a,b,c,d,e,51); STEP(e,f,g,h,a,b,c,d,52); STEP(d,e,f,g,h,a,b,c,53); STEP(c,d,e,f,g,h,a,b,54); STEP(b,c,d,e,f,g,h,a,55); STEP(a,b,c,d,e,f,g,h,56); STEP(h,a,b,c,d,e,f,g,57); STEP(g,h,a,b,c,d,e,f,58); STEP(f,g,h,a,b,c,d,e,59); STEP(e,f,g,h,a,b,c,d,60); STEP(d,e,f,g,h,a,b,c,61); STEP(c,d,e,f,g,h,a,b,62); STEP(b,c,d,e,f,g,h,a,63); STEP(a,b,c,d,e,f,g,h,64); STEP(h,a,b,c,d,e,f,g,65); STEP(g,h,a,b,c,d,e,f,66); STEP(f,g,h,a,b,c,d,e,67); STEP(e,f,g,h,a,b,c,d,68); STEP(d,e,f,g,h,a,b,c,69); STEP(c,d,e,f,g,h,a,b,70); STEP(b,c,d,e,f,g,h,a,71); STEP(a,b,c,d,e,f,g,h,72); STEP(h,a,b,c,d,e,f,g,73); STEP(g,h,a,b,c,d,e,f,74); STEP(f,g,h,a,b,c,d,e,75); STEP(e,f,g,h,a,b,c,d,76); STEP(d,e,f,g,h,a,b,c,77); STEP(c,d,e,f,g,h,a,b,78); STEP(b,c,d,e,f,g,h,a,79); s[0] += a; s[1] += b; s[2] += c; s[3] += d; s[4] += e; s[5] += f; s[6] += g; s[7] += h; } }