code: plan9front

ref: afccf58e8e174dec825412bc200c3c9af31bef3b
dir: /sys/man/2/rsa/

View raw version
.TH RSA 2
.SH NAME
asn1dump,
asn1toRSApriv,
asn1encodeRSApriv,
asn1encodeRSApub,
decodePEM,
rsadecrypt,
rsaencrypt,
rsafill,
rsagen,
rsaprivalloc,
rsaprivfree,
rsaprivtopub,
rsapuballoc,
rsapubfree,
X509toRSApub,
X509reqtoRSApub,
X509rsagen,
X509rsareq,
X509rsaverify,
X509rsaverifydigest \- RSA encryption algorithm
.SH SYNOPSIS
.B #include <u.h>
.br
.B #include <libc.h>
.br
.B #include <mp.h>
.br
.B #include <libsec.h>
.PP
.ta +\w'\fLRSApriv* \fP'u
.B
RSApriv*	rsagen(int nlen, int elen, int nrep)
.PP
.ta +\w'\fLRSApriv* \fP'u
.B
RSApriv*	rsafill(mpint *n, mpint *e, mpint *d, mpint *p, mpint *q)
.PP
.B
mpint*	rsaencrypt(RSApub *k, mpint *in, mpint *out)
.PP
.B
mpint*	rsadecrypt(RSApriv *k, mpint *in, mpint *out)
.PP
.B
RSApub*	rsapuballoc(void)
.PP
.B
void	rsapubfree(RSApub*)
.PP
.B
RSApriv*	rsaprivalloc(void)
.PP
.B
void	rsaprivfree(RSApriv*)
.PP
.B
RSApub*	rsaprivtopub(RSApriv*)
.PP
.B
RSApub*	X509toRSApub(uchar *cert, int ncert, char *name, int nname)
.PP
.B
RSApub* X509reqtoRSApub(uchar *req, int nreq, char *name*, int nname)
.PP
.B
RSApriv*	asn1toRSApriv(uchar *priv, int npriv)
.PP
.B
int	asn1encodeRSApriv(RSApriv *k, uchar *buf, int len)
.PP
.B
int	asn1encodeRSApub(RSApub *pk, uchar *buf, int len)
.PP
.B
void	asn1dump(uchar *der, int len)
.PP
.B
uchar*	decodePEM(char *s, char *type, int *len, char **new_s)
.PP
.B
uchar*	X509rsagen(RSApriv *priv, char *subj, ulong valid[2], int *certlen);
.PP
.B
uchar*	X509rsareq(RSApriv *priv, char *subj, int *reqlen)
.PP
.B
char*	X509rsaverify(uchar *cert, int ncert, RSApub *pk)
.PP
.B
char*	X509rsaverifydigest(uchar *sig, int siglen, uchar *edigest, int edigestlen, RSApub *pk)
.DT
.SH DESCRIPTION
RSA is a public key encryption algorithm.  The owner of a key publishes
the public part of the key:
.IP
.EX
struct RSApub
{
	mpint	*n;	/* modulus */
	mpint	*ek;	/* exp (encryption key) */
};
.EE
.LP
This part can be used for encrypting data (with
.IR rsaencrypt )
to be sent to the owner.
The owner decrypts (with
.IR rsadecrypt )
using his private key:
.IP
.EX
struct RSApriv
{
	RSApub	pub;
	mpint	*dk;	/* exp (decryption key) */

	/* precomputed crt values */
	mpint	*p;
	mpint	*q;
	mpint	*kp;	/* k mod p-1 */
	mpint	*kq;	/* k mod q-1 */
	mpint	*c2;	/* for converting residues to number */
};
.EE
.PP
Keys are generated using
.IR rsagen .
.I Rsagen
takes both bit length of the modulus, the bit length of the
public key exponent, and the number of repetitions of the Miller-Rabin
primality test to run.  If the latter is 0, it does the default number
of rounds.
.I Rsagen
returns a newly allocated structure containing both
public and private keys.
.I Rsafill
returns a newly allocated private key by recomputing
.IR kp ,
.IR kq ,
and
.IR c2 .
.I Rsaprivtopub
returns a newly allocated copy of the public key
corresponding to the private key.
.PP
The routines
.IR rsaalloc ,
.IR rsafree ,
.IR rsapuballoc ,
.IR rsapubfree ,
.IR rsaprivalloc ,
and
.I rsaprivfree
are provided to aid in user provided key I/O.
.PP
Given a binary X.509
.IR cert ,
the routine
.I X509toRSApub
returns the public key and, if
.I name
is not
.BR nil ,
a concatenation of the CN part of the Distinguished Name of the
certificate's Subject and further Subject Alternative Names
separated by comma.
(These are conventionally a userid or a host DNS name.)
No verification is done of the certificate signature;  the
caller should check the fingerprint,
.IR sha1(cert) ,
against a table or check the certificate by other means.
X.509 certificates are often stored in PEM format; use
.I dec64
to convert to binary before computing the fingerprint or calling
.IR X509toRSApub .
For the special case of
certificates signed by a known trusted key
(in a single step, without certificate chains),
.I X509rsaverify
checks the signature on
.IR cert .
It returns
.B nil
if successful, else an error string.
.PP
The routine
.I X509reqtoRSApub
is similar to
.I X509toRSApub
above, but decodes a X509 certificate request.
.PP
.I X509rsaverifydigest
takes a encoded PKCS #1 signature as used in X.509 as
.IR sig [ siglen ]
and verifies it against the expected cryptographic hash 
.IR edigest [ edigestlen ]
of the signed data;
returning
.B nil
on success or an error string.
.PP
.I X509rsagen
creates a self-signed X.509 certificate, given an RSA keypair
.IR priv ,
a issuer/subject string
.IR subj ,
and the starting and ending validity dates,
.IR valid .
Length of the allocated binary certificate request is stored in
.IR reqlen .
The subject line is conventionally of the form
.IP
.EX
C=US ST=NJ L=07922 O=Lucent OU='Bell Labs' CN=Eric
.EE
.LP
using the quoting conventions of
.I tokenize
in
.IR getfields (2).
.PP
.I Asn1toRSApriv
converts an ASN1 formatted RSA private key into the corresponding
.B RSApriv
structure.
.PP
.I Asn1encodeRSApriv
and
.I asn1encodeRSApub
export a
.B RSApriv
or
.B RSApub
structure to ASN1 format.
On success,
.I buf
is filled and the encoded byte length is returned.
Otherwise
.B -1
is returned and error string is set.
.PP
.I Asn1dump
prints an ASN1 object to standard output.
.PP
.I DecodePEM
takes a zero terminated string,
.IR s ,
and decodes the PEM (privacy-enhanced mail) formatted section for
.I type
within it.
If successful, it returns
.IR malloc ed
storage containing the decoded section,
which the caller must free,
and sets
.BI * len
to its decoded length.
Otherwise
.B nil
is returned and
.BI * len
is undefined.
If not
.BR nil ,
.I new_s
is set to the first character beyond the
.I type
section.
.SH SOURCE
.B /sys/src/libsec
.SH SEE ALSO
.IR mp (2),
.IR aes (2),
.IR blowfish (2),
.IR des (2),
.IR dsa (2),
.IR elgamal (2),
.IR rc4 (2),
.IR sechash (2),
.IR prime (2),
.IR rand (2),
.IR rsa (8)