code: purgatorio

ref: 75c92428225428c8fde2d015f010e608a0b12f1d
dir: /man/2/crypt-gensk/

View raw version
.TH CRYPT-GENSK 2
.SH NAME
crypt: genSK, genSKfromPK, sktopk, dhparams, sign, verify \- generate keys and digital signatures
.SH SYNOPSIS
.EX
include "ipints.m";
ipints := load IPints IPints->PATH;
IPint: import ipints;

include "crypt.m";
crypt := load Crypt Crypt->PATH;

PK: adt
{
    pick {
    RSA =>
        n:     ref IPint;   # modulus
        ek:    ref IPint;   # exp (encryption key)
    Elgamal =>
        p:     ref IPint;   # modulus
        alpha: ref IPint;   # generator
        key:   ref IPint;   # encryption key (alpha**secret mod p)
    DSA =>
        p:     ref IPint;   # modulus
        q:     ref IPint;   # group order, q divides p-1
        alpha: ref IPint;   # group generator
        key:   ref IPint;   # encryption key (alpha**secret mod p)
    }
};

SK: adt
{
    pick {
    RSA =>
        pk:     ref PK.RSA;
        dk:     ref IPint;   # exp (decryption key)
        p:      ref IPint;   # q in pkcs
        q:      ref IPint;   # p in pkcs
        # precomputed crt values
        kp:     ref IPint;   # k mod p-1
        kq:     ref IPint;   # k mod q-1
        c2:     ref IPint;   # for converting residues to number
    Elgamal =>
        pk:     ref PK.Elgamal;
        secret: ref IPint;   # decryption key
    DSA =>
        pk:     ref PK.DSA;
        secret: ref IPint;   # decryption key
    }
};

PKsig: adt
{
    pick {
    RSA =>
        n:  ref IPint;
    Elgamal =>
        r:  ref IPint;
        s:  ref IPint;
    DSA =>
        r:  ref IPint;
        s:  ref IPint;
    }
};

genSK:       fn(algname: string, length: int): ref SK;
genSKfromPK: fn(pk: ref PK): ref SK;
sktopk:      fn(sk: ref SK): ref PK;

sign:        fn(sk: ref SK, m: ref IPint): ref PKsig;
verify:      fn(pk: ref PK, sig: ref PKsig, m: ref IPint): int;

dhparams:    fn(nbits: int): (ref IPint, ref IPint);
.EE
.SH DESCRIPTION
.B Crypt
implements a set of public-key signature algorithms.
The public/private key pairs are represented by values of the adt
.BR SK ,
containing both the private (secret) and public parts of the pair,
and
.BR PK ,
containing only the public part.
The several algorithms are represented by different pick variants.
.PP
.B GenSK
generates a new public/private key pair, represented by
.BR SK .
.I Algname
is the name of the algorithm to use; in the current implementation,
.BR dsa ,
.B elgamal
and
.B rsa
are possible.
.I Length
gives the length of the key modulus in bits.
.B GenSK
returns nil if an unknown algorithm has been specified.
.PP
.B GenSKfromPK
generates a private key that has the system parameters as the public key
.IR pk .
It is used to generate new keys that are of the same complexity as old keys.
.PP
.B Sktopk
returns a reference to the public part of private key
.IR sk .
.PP
.B Sign
creates a digital signature of a message
.IR m ,
represented by an IPint,
using the private key
.IR sk .
Typically
.I m
represents a secure hash (eg, using
.IR crypt-sha1 (2))
of a much larger message.
.PP
.B Verify
uses public key
.I pk
to verify that the value
.I sig
is a digital signature of the message
.I m
using the private key corresponding to
.IR pk .
It returns non-zero (true) if the signature is valid; zero (false) otherwise.
.PP
Most applications use generic operations on public and private keys,
referring to
.B PK
and
.BR SK ,
but specific variants can be named, such as
.BR PK.RSA
for RSA keys, allowing use of RSA-specific operations.
.IR Crypt-dsagen (2)
describes functions for key generation that are specific to various algorithms,
using algorithm-specific parameters.
.PP
.B Dhparams
creates Diffie-Hellman parameters. It returns
a tuple of IPints
.RI ( alpha , p ).
.I P
is an
.I nbits
long prime number that serves as the modulus.
.I Alpha
is a primitive root in the integer field defined by that modulus.
.SH SEE ALSO
.IR crypt-dsagen (2),
.IR crypt-sha1 (2),
.IR security-auth (2),
.IR security-oldauth (2)