ref: b39057dffedac61fd6c028908a9aaadf4426b446
dir: /man/2/draw-rect/
.TH DRAW-RECT 2 .SH NAME Rect \- rectangular portion of the plane .SH SYNOPSIS .EX include "draw.m"; draw := load Draw Draw->PATH; Rect: adt { min: Point; max: Point; canon: fn(r: self Rect): Rect; dx: fn(r: self Rect): int; dy: fn(r: self Rect): int; eq: fn(r: self Rect, s: Rect): int; Xrect: fn(r: self Rect, s: Rect): int; inrect: fn(r: self Rect, s: Rect): int; clip: fn(r: self Rect, s: Rect): (Rect, int); combine: fn(r: self Rect, s: Rect): Rect; contains: fn(r: self Rect, p: Point): int; addpt: fn(r: self Rect, p: Point): Rect; subpt: fn(r: self Rect, p: Point): Rect; inset: fn(r: self Rect; n: int): Rect; }; .EE .SH DESCRIPTION The type .B Rect defines a rectangular portion of the integer grid. .TP 10 .BR min ", " max These members define the upper left .RB ( min ) and lower right .RB ( max ) points for the rectangle. The rectangle contains the pixels .BI "min.x\ \fR\(<=\ " "x\ \fR<\ " max.x and .BI "min.y\ \fR\(<=\ " "y\ \fR<\ " max.y\fR. In general, .B Rect coordinates should be in canonical form: .BR min.x "\ \(<=\ " max.x and .BR min.y "\ \(<=\ " max.y . Some functions give undefined results if the input rectangles are not canonical. .TP .IB r .canon() Returns a canonical rectangle by sorting the coordinates of .IR r . .TP .IB r .dx() Returns the horizontal dimension of .IR r . .TP .IB r .dy() Returns the vertical dimension of .IR r . .TP .IB r .eq( s ) Returns non-zero if the rectangles .I r and .I s have the same coordinates and zero otherwise. .TP .IB r .Xrect( s ) Returns non-zero if the rectangles .I r and .I s intersect and zero otherwise. .I Intersection means the rectangles share at least one pixel; zero-sized rectangles do not intersect. .TP .IB r .inrect( s ) Returns non-zero if .I r is completely inside .I s and zero otherwise. Rectangles with equal coordinates are considered to be inside each other. Zero-sized rectangles contain no rectangles. .TP .IB r .clip( s ) Computes the intersection between .I r and .IR s . If the input rectangles intersect, .B clip returns the resulting rectangle and a non-zero integer value. If the rectangles do not intersect, .B clip returns .I r and a zero value. .TP .IB r .combine( s ) Returns the smallest rectangle sufficient to cover all the pixels of .I r and .IR s . .TP .IB r .contains( p ) Returns non-zero if the rectangle .I r contains the pixel with the coordinates of .I p and zero otherwise. Zero-sized rectangles contain no points. .TP .IB r .addpt( p ) Returns the rectangle .BI ( r .min.add( p ), .IB r .max.add( p ))\fR. .TP .IB r .subpt( p ) Returns the rectangle .BI ( r .min.sub( p ), .IB r .max.sub( p ))\fR. .TP .IB r .inset( n ) Returns the rectangle .BI ( r .min.add(( n , .IB n )), .IB r .max.sub(( n , .IB n ))\fR. The result will not be in canonical form if the inset amount is too large for the rectangle.