ref: da7d6df6faf18e289fe0f3f61524dcc7fddeef18
dir: /appl/cmd/sh/mpexpr.b/
implement Shellbuiltin; include "sys.m"; sys: Sys; include "draw.m"; include "keyring.m"; keyring: Keyring; IPint: import keyring; include "sh.m"; sh: Sh; Listnode, Context: import sh; myself: Shellbuiltin; Big: type ref IPint; Zero: Big; One: Big; initbuiltin(ctxt: ref Context, shmod: Sh): string { sys = load Sys Sys->PATH; keyring = load Keyring Keyring->PATH; sh = shmod; myself = load Shellbuiltin "$self"; if (myself == nil) ctxt.fail("bad module", sys->sprint("expr: cannot load self: %r")); Zero = IPint.inttoip(0); One = IPint.inttoip(1); ctxt.addsbuiltin("expr", myself); ctxt.addbuiltin("ntest", myself); return nil; } whatis(nil: ref Sh->Context, nil: Sh, nil: string, nil: int): string { return nil; } getself(): Shellbuiltin { return myself; } EQ, GT, LT, GE, LE, PLUS, MINUS, DIVIDE, AND, TIMES, MOD, OR, XOR, UMINUS, SHL, SHR, NOT, BNOT, NEQ, REP, SEQ, BITS, EXPMOD, INVERT, RAND, EXP: con iota; runbuiltin(ctxt: ref Sh->Context, nil: Sh, cmd: list of ref Sh->Listnode, nil: int): string { case (hd cmd).word { "ntest" => if (len cmd != 2) ctxt.fail("usage", "usage: ntest n"); if(strtoip(ctxt, (hd tl cmd).word).eq(Zero)) return "false"; } return nil; } runsbuiltin(ctxt: ref Sh->Context, nil: Sh, cmd: list of ref Sh->Listnode): list of ref Listnode { # only one sbuiltin: expr. stk: list of Big; lastop := -1; lastn := -1; lastname := ""; radix: int; (cmd, radix) = opts(ctxt, tl cmd); for (; cmd != nil; cmd = tl cmd) { w := (hd cmd).word; op := -1; nops := 2; case w { "+" => op = PLUS; "-" => op = MINUS; "x" or "*" or "×" => op = TIMES; "/" => op = DIVIDE; "%" => op = MOD; "and" => op = AND; "or" => op = OR; "xor" => op = XOR; "_"=> (op, nops) = (UMINUS, 1); "<<" or "shl" => op = SHL; ">>" or "shr" => op = SHR; "=" or "==" or "eq" => op = EQ; "!=" or "neq" => op = NEQ; ">" or "gt" => op = GT; "<" or "lt" => op = LT; ">=" or "ge" => op = GE; "<=" or "le" => op = LE; "!" or "not" => (op, nops) = (NOT, 1); "~" => (op, nops) = (BNOT, 1); "rep" => (op, nops) = (REP, 0); "seq" => (op, nops) = (SEQ, 2); "bits" => (op, nops) = (BITS, 1); "expmod" => (op, nops) = (EXPMOD, 3); "invert" => (op, nops) = (INVERT, 2); "rand" => (op, nops) = (RAND, 1); "exp" or "xx" or "**" => (op, nops) = (EXP, 2); } if (op == -1){ if (w == nil || (w[0] != '-' && (w[0] < '0' || w[0] > '9'))) ctxt.fail("usage", sys->sprint("expr: unknown operator '%s'", w)); stk = strtoip(ctxt, w) :: stk; }else stk = operator(ctxt, stk, op, nops, lastop, lastn, w, lastname); lastop = op; lastn = nops; lastname = w; } r: list of ref Listnode; for (; stk != nil; stk = tl stk) r = ref Listnode(nil, iptostr(hd stk, radix)) :: r; return r; } opts(ctxt: ref Context, cmd: list of ref Listnode): (list of ref Listnode, int) { if (cmd == nil) return (nil, 10); w := (hd cmd).word; if (len w < 2) return (cmd, 10); if (w[0] != '-' || (w[1] >= '0' && w[1] <= '9')) return (cmd, 10); if (w[1] != 'r') ctxt.fail("usage", "usage: expr [-r radix] [arg...]"); if (len w > 2) w = w[2:]; else { if (tl cmd == nil) ctxt.fail("usage", "usage: expr [-r radix] [arg...]"); cmd = tl cmd; w = (hd cmd).word; } r := int w; if (r <= 0 || (r > 36 && r != 64)) ctxt.fail("usage", "expr: invalid radix " + string r); return (tl cmd, int w); } operator(ctxt: ref Context, stk: list of Big, op, nops, lastop, lastn: int, opname, lastopname: string): list of Big { al: list of Big; for (i := 0; i < nops; i++) { if (stk == nil) ctxt.fail("empty stack", sys->sprint("expr: empty stack on op '%s'", opname)); al = hd stk :: al; stk = tl stk; } return oper(ctxt, al, op, lastop, lastn, lastopname, stk); } # args are in reverse order oper(ctxt: ref Context, args: list of Big, op, lastop, lastn: int, lastopname: string, stk: list of Big): list of Big { if (op == REP) { if (lastop == -1 || lastop == SEQ || lastn != 2) ctxt.fail("usage", "expr: bad operator for rep"); if (stk == nil || tl stk == nil) return stk; while (tl stk != nil) stk = operator(ctxt, stk, lastop, 2, -1, -1, lastopname, nil); return stk; } n3 := Zero; n2 := Zero; n1 := hd args; if (tl args != nil){ n2 = hd tl args; if(tl tl args != nil) n3 = hd tl tl args; } r := Zero; case op { EQ => r = mki(n1.eq(n2)); NEQ => r = mki(!n1.eq(n2)); GT => r = mki(n1.cmp(n2) > 0); LT => r = mki(n1.cmp(n2) < 0); GE => r = mki(n1.cmp(n2) >= 0); LE => r = mki(n1.cmp(n2) <= 0); PLUS => r = n1.add(n2); MINUS => r = n1.sub(n2); NOT => r = mki(n1.eq(Zero)); DIVIDE => if (n2.eq(Zero)) ctxt.fail("divide by zero", "expr: division by zero"); (r, nil) = n1.div(n2); MOD => if (n2.eq(Zero)) ctxt.fail("divide by zero", "expr: division by zero"); (nil, r) = n1.div(n2); TIMES => r = n1.mul(n2); AND => r = bitop(ipand, n1, n2); OR => r = bitop(ipor, n1, n2); XOR => r = bitop(ipxor, n1, n2); UMINUS => r = n1.neg(); BNOT => r = n1.neg().sub(One); SHL => r = n1.shl(n2.iptoint()); SHR => r = n1.shr(n2.iptoint()); SEQ => return seq(n1, n2, stk); BITS => r = mki(n1.bits()); EXPMOD => r = n1.expmod(n2, n3); EXP => r = n1.expmod(n2, nil); RAND => r = IPint.random(0, n1.iptoint()); INVERT => r = n1.invert(n2); } return r :: stk; } # won't work if op(0, 0) != 0 bitop(op: ref fn(n1, n2: Big): Big, n1, n2: Big): Big { bits := max(n1.bits(), n2.bits()); return signedmag(op(twoscomp(n1, bits), twoscomp(n2, bits)), bits); } onebits(n: int): Big { return One.shl(n).sub(One); } # return a two's complement version of n, # sign-extended to b bits if negative. # sign bit is at 1<<b. twoscomp(n: Big, b: int): Big { if(n.cmp(Zero) >= 0) return n; return n.not().ori(onebits(b).xor(onebits(n.bits()))).add(One); } # return conventional representation of n, # where n is in two's complement form in b bits. signedmag(n: Big, b: int): Big { if(n.and(One.shl(b)).eq(Zero)) return n; return n.sub(One).not().and(onebits(b)).neg(); } max(x, y: int): int { if(x > y) return x; else return y; } seq(n1, n2: Big, stk: list of Big): list of Big { incr := mki(1); if (n2.cmp(n1) < 0) incr = mki(-1); for (; !n1.eq(n2); n1 = n1.add(incr)) stk = n1 :: stk; return n1 :: stk; } strtoip(ctxt: ref Context, s: string): Big { t := s; if (neg := s[0] == '-') s = s[1:]; radix := 10; for (i := 0; i < len s && i < 3; i++) { if (s[i] == 'r') { radix = int s; s = s[i+1:]; break; } } if (radix == 10) return IPint.strtoip(s, 10); if (radix == 0 || (radix > 36 && radix != 64)) ctxt.fail("usage", "expr: bad number " + t); n := Zero; case radix { 10 or 16 or 64 => n = IPint.strtoip(s, radix); * => r := mki(radix); for (i = 0; i < len s; i++) { if ('0' <= s[i] && s[i] <= '9') n = n.mul(r).add(mki(s[i] - '0')); else if ('a' <= s[i] && s[i] < 'a' + radix - 10) n = n.mul(r).add(mki(s[i] - 'a' + 10)); else if ('A' <= s[i] && s[i] < 'A' + radix - 10) n = n.mul(r).add(mki(s[i] - 'A' + 10)); else break; } } if(neg) return n.neg(); return n; } iptostr(n: Big, radix: int): string { neg := n.cmp(Zero) < 0; t: string; case radix { 2 or 4 or 16 or 32 => b := n.iptobebytes(); rbits := log2(radix); bits := roundup(n.bits(), rbits); for(i := bits - rbits; i >= 0; i -= rbits){ d := 0; for(j := 0; j < rbits; j++) d |= getbit(b, i+j) << j; t[len t] = digit(d); } 10 => return n.iptostr(radix); 64 => t = n.iptostr(radix); if(neg) t = t[1:]; * => if(neg) n = n.neg(); r := mki(radix); s: string; do{ d: Big; (n, d) = n.div(r); s[len s] = digit(d.iptoint()); }while(n.cmp(Zero) > 0); t = s; for (i := len s - 1; i >= 0; i--) t[len s - 1 - i] = s[i]; } t = string radix + "r" + t; if (neg) return "-" + t; return t; } mki(i: int): Big { return IPint.inttoip(i); } b2s(b: array of byte): string { s := ""; for(i := 0; i < len b; i++) s += sys->sprint("%.2x", int b[i]); return s; } # count from least significant bit. getbit(b: array of byte, bit: int): int { if((i := bit >> 3) >= len b){ return 0; }else{ return (int b[len b - i -1] >> (bit&7)) & 1; } } digit(d: int): int { if(d < 10) return '0' + d; else return 'a' + d - 10; } log2(x: int): int { case x { 2 => return 1; 4 => return 2; 8 => return 3; 16 => return 4; 32 => return 5; } return 0; } roundup(n: int, m: int): int { return m*((n+m-1)/m); } # these functions are to get around the fact that the limbo compiler isn't # currently considering ref fn(x: self X, ...) compatible with ref fn(x: X, ...). ipand(n1, n2: Big): Big { return n1.and(n2); } ipor(n1, n2: Big): Big { return n1.ori(n2); } ipxor(n1, n2: Big): Big { return n1.xor(n2); }