ref: babf901b4a508c3ec5d1f89655f10377bbdf9637
dir: /appl/lib/ida/ida.b/
implement Ida;
#
# M Rabin, ``Efficient Dispersal of Information for Security,
# Load Balancing, and Fault Tolerance'', JACM 36(2), April 1989, pp. 335-348
# the scheme used below is that suggested at the top of page 340
#
include "sys.m";
sys: Sys;
include "rand.m";
rand: Rand;
include "ida.m";
invtab: array of int;
init()
{
sys = load Sys Sys->PATH;
rand = load Rand Rand->PATH;
rand->init(sys->pctl(0, nil)^(sys->millisec()<<8));
# the table is in a separate module so that
# the copy in the module initialisation section is discarded
# after unloading, preventing twice the space being used
idatab := load Idatab Idatab->PATH;
invtab = idatab->init(); # the big fella
idatab = nil;
}
Field: con 65537;
Fmax: con Field-1;
div(a, b: int): int
{
return mul(a, invtab[b]);
}
mul(a, b: int): int
{
if(a == Fmax && b == Fmax) # avoid overflow
return 1;
return int((big(a*b) & 16rFFFFFFFF) % big Field);
}
sub(a, b: int): int
{
return ((a-b)+Field)%Field;
}
add(a, b: int): int
{
return (a + b)%Field;
}
#
# return a fragment representing the encoded version of data
#
fragment(data: array of byte, m: int): ref Frag
{
nb := len data;
nw := (nb+1)/2;
a := array[m] of {* => rand->rand(Fmax)+1}; # no zero elements
f := array[(nw + m - 1)/m] of int;
o := 0;
i := 0;
for(k := 0; k < len f; k++){
c := 0;
for(j := 0; j < m && i < nb; j++){
b := int data[i++] << 8;
if(i < nb)
b |= int data[i++];
c = add(c, mul(b, a[j]));
}
f[o++] = c;
}
return ref Frag(nb, m, a, f, nil);
}
#
# return the data encoded by the given set of fragments
#
reconstruct(frags: array of ref Frag): (array of byte, string)
{
if(len frags < 1 || len frags < (m := frags[0].m))
return (nil, "too few fragments");
fraglen := len frags[0].enc;
a := array[m] of array of int;
for(j := 0; j < len a; j++){
a[j] = frags[j].a;
if(len a[j] != m)
return (nil, "inconsistent encoding matrix");
if(len frags[j].enc != fraglen)
return (nil, "inconsistent fragments");
}
ainv := minvert(a);
out := array[fraglen*2*m] of byte;
o := 0;
for(k := 0; k < fraglen; k++){
for(i := 0; i < m; i++){
row := ainv[i];
b := 0;
for(j = 0; j < m; j++)
b = add(b, mul(frags[j].enc[k], row[j]));
if((b>>16) != 0)
return (nil, "corrupt output");
out[o++] = byte (b>>8);
out[o++] = byte b;
}
}
if(frags[0].dlen < len out)
out = out[0: frags[0].dlen];
return (out, nil);
}
#
# Rabin's paper gives a way of building an encoding matrix that can then
# be inverted in O(m^2) operations, compared to O(m^3) for the following,
# but m is small enough it doesn't seem worth the added complication,
# and it's only done once per set
#
minvert(a: array of array of int): array of array of int
{
m := len a; # it's square
out := array[m] of {* => array[m*2] of {* => 0}};
for(r := 0; r < m; r++){
out[r][0:] = a[r];
out[r][m+r] = 1; # identity matrix
}
for(r = 0; r < m; r++){
x := out[r][r]; # by construction, cannot be zero, unless later corrupted
for(c := 0; c < 2*m; c++)
out[r][c] = div(out[r][c], x);
for(r1 := 0; r1 < m; r1++)
if(r1 != r){
y := div(out[r1][r], out[r][r]);
for(c = 0; c < 2*m; c++)
out[r1][c] = sub(out[r1][c], mul(y, out[r][c]));
}
}
for(r = 0; r < m; r++)
out[r] = out[r][m:];
return out;
}
Val: adt {
v: int;
n: int;
};
addval(vl: list of ref Val, v: int): list of ref Val
{
for(l := vl; l != nil; l = tl l)
if((hd l).v == v){
(hd l).n++;
return vl;
}
return ref Val(v, 1) :: vl;
}
mostly(vl: list of ref Val): ref Val
{
if(len vl == 1)
return hd vl;
v: ref Val;
for(; vl != nil; vl = tl vl)
if(v == nil || (hd vl).n > v.n)
v = hd vl;
return v;
}
#
# return a consistent set of Frags: all parameters agree with the majority,
# and obviously bad fragments have been discarded
#
# in the absence of error, they should all have the same value, so lists are fine;
# could separately return the discarded ones, out of interest
#
consistent(frags: array of ref Frag): array of ref Frag
{
t := array[len frags] of ref Frag;
t[0:] = frags;
frags = t;
ds: list of ref Val; # data size
ms: list of ref Val;
fls: list of ref Val;
for(i := 0; i < len frags; i++){
f := frags[i];
if(f != nil){
ds = addval(ds, f.dlen);
ms = addval(ms, f.m);
fls = addval(fls, len f.enc);
}
}
dv := mostly(ds);
mv := mostly(ms);
flv := mostly(fls);
if(mv == nil || flv == nil || dv == nil)
return nil;
for(i = 0; i < len frags; i++){
f := frags[i];
if(f == nil || f.m != mv.v || f.m != len f.a || len f.enc != flv.v || f.dlen != dv.v || badfrag(f)){ # inconsistent: drop it
if(i+1 < len frags)
frags[i:] = frags[i+1:];
frags = frags[0:len frags-1];
}
}
if(len frags == 0)
return nil;
return frags;
}
badfrag(f: ref Frag): int
{
for(i := 0; i < len f.a; i++){
v := f.a[i];
if(v <= 0 || v >= Field)
return 1;
}
for(i = 0; i < len f.a; i++){
v := f.enc[i];
if(v == 0 || v >= Field)
return 1;
}
return 0;
}